М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
s1453849
s1453849
07.01.2022 07:14 •  Алгебра

Розвяжiть рiвняня 6(x+2)-5(x-3)=19-x

👇
Открыть все ответы
Ответ:
Olegg9
Olegg9
07.01.2022
С вероятностью 0,7 погода остается прежней, а с 0,3 - меняется.
Если погода поменялась за 3 дня, то возможны варианты:
1) 16 и 17 погода осталась, 18 поменялась. p = 0,7*0,7*0,3 = 0,147
2) 16 осталась, 17 поменялась, 18 осталась. p = 0,7*0,3*0,7 = 0,147
3) 16 поменялась, 17 и 18 осталась. p = 0,3*0,7*0,7 = 0,147
4) 16 поменялась, 17 поменялась, 18 поменялась. p = 0,3*0,3*0,3 = 0,027
Итоговая вероятность равна сумме этих вероятностей
P = 0,147*3 + 0,027 = 0,441 + 0,027 = 0,468
Посчитано без калькулятора!
4,4(41 оценок)
Ответ:
milena7772
milena7772
07.01.2022

y=kx+b - уравнение прямой  с угловым коэффициентом

Подставим в него координаты точек А и В

А (6;-4)

x=6;  y=-4

-4=k·6+b

В (8;4)

x=8;  y=4

4=k·8+b

Решаем систему двух уравнений и находим k  и  b:

\left \{ {{-4=6k+b} \atop {4=8k+b}} \right.

\left \{ {{-6k-4=b} \atop {4=8k-6k-4}} \right.left \{ {{-6k-4=b} \atop {4k=8}} \right.

\left \{ {{-6\cdot 2-4=b} \atop {k=2}} \right.left \{ {{b=-16} \atop {k=2}} \right.

y=2x-16 - уравнение прямой  AB с угловым коэффициентом  k=2

2x-y-16=0  - общее уравнение прямой АВ

б)

Параллельные прямые имеют одинаковые угловые коэффициенты

y=2x+b  - уравнение прямых, параллельных АВ

Чтобы найти прямую, проходящую через точку С подставим координаты точки С

С (-1;6)

6=2·(-1)+b

b=8

y=2x+8  - уравнение прямой, параллельной АВ и проходящей через точку С.

2x-y+8=0 общее уравнение прямой, параллельной АВ и проходящей через точку С.

Произведение угловых коэффициентов взаимно перпендикулярных прямых равно (-1)

k₁·k₂=-1

k₁=2

k₂=-\frac{1}{2}-  угловой коэффициент прямой, перпендикулярной АВ

y=-\frac{1}{2}x+b  - уравнение прямых, перпендикулярных АВ

Подставляем координаты точки С:

6=(-\frac{1}{2}) \cdot (-1)+b

b=\frac{13}{2}

y=-\frac{1}{2}x+\frac{13}{2} -уравнение прямой, перпендикулярной АВ и проходящей через точку С

x+2y-13=0- общее уравнение прямой, перпендикулярной АВ и проходящей через точку С

в)

Прямая, параллельная АВ и проходящей через точку С. пересекается с прямой, перпендикулярной АВ и проходящей через точку С  в точке С.

Значит требуется найти точку пересечения прямой АВ и прямой, перпендикулярной АВ и проходящей через точку С

Решаем систему уравнений:

\left \{ {{y=2x-16} \atop {y=-\frac{1}{2}x+\frac{13}{2}}} \right.

Приравниваем правые части уравнений:

2x-16=-\frac{1}{2}x+\frac{13}{2}

х=9

y=2·9-16

y=2

О т в е т. (9;2)

4,7(39 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ