1. A) Выразим х из первого уравнения системы и подставим во второе: х=3+у 3(3+у)+у=5 9+3у+у=5 4у=-4 у=-1 Подставим найденное значение у в выраженное нами значение х: х=3+у=3+(-1)=3-1=2
Проверим верность вычислений: 2-(-1)=2+1=3 - верно. 3*2+(-1)=6-1=5 - верно. х=2, у=-1. Б) Выразим у из первого уравнения системы и подставим во второе: у=4-х² 2*(4-х²)-х=7 8-2х²-х=7 2х²+х-1=0 Д=1+8=9 х1=(-1+3):4=1/2 х2=(-1-3):4=-1 у=4-х² При х1=1/2, у1=4-1/4=3 целых 3/4 При х2=-1, у2=4-(-1)²=4-1=3
х1=1/2, у1=3 целых 3/4; х2=-1, у2=3.
2.Подставим нашу точку (4;-2) в данные уравнения. Если в обоих уравнениях получится тождество, то эта пара чисел является решением системы, в противном случае-нет. На первом месте всегда стоит х, а на втором - у (если не оговорено в условиях другое). Подставляем: 4+(-2)=2 4-2=2 2=2 - верно
4=-2, но 4≠-2. Второе условие не соответствует - пара чисел (4;-2) - не является решением для данной системы уравнений.
1. По Виету х=4; х=-3, т.к. 4-3=1, 4*(-3)=-12
ответ 4; -3.
2. 1) Дискриминант равен 1-4*(-6)*12=1+24*12>0, значит, квадратный трехчлен имеет корни. Разложить можно.
ответ да.
2)Дискриминант равен 64-4*3*6=64-72=-8<0, значит, корней у кв. трехчлена нет. Разложить нельзя.
ответ нет.
3.-нет вопроса.
4.
0.4х²-2х+25, верным ответом является первый, т.к. 0,4( х – 2,5)²=
0.4*(х²-2х+6.25)=0.4х²-2х+2.5
5. х=(5±√(25+24))/12=(5±7)12;х=1; х=-1/6
Разложение 6*(х-1)*(х+1/6)=(6х + 1)(х – 1)- третий ответ верный
6.- нет вопроса.