Построй графики этих уравнений на координатной плоскости XOY. 2|x|+3|y| = 6 - этот график симметричен относительно оси ОХ и симметричен относительно оси ОУ, т.к. замены x на -x, y на -y фактически не изменяют само уравнение. Фактически - это ромб, диагоналями которого являются оси OX и OY. x^2 + y^2 = a, график этого уравнения - это окружность с центром в начале координат и радиусом R = . При различном радиусе этой окружности будет разное количество пересечений ромба с окружностью. Нужно исследовать этот вопрос геометрически.
1. Ваня встречает маму. Он ее обгоняет и движется вперед. За двенадцать минут мама сделает один оборот вокруг озера. Ваня встретит маму через двенадцать минут если он сделает за это время два оборота вокруг озера. Таким образом, Ваня делает один оборот вокруг озера за шесть минут.
2. Далее, предположим, что длина дороги вокруг озера L. Тогда Скорость мамы Vм = L/12. Скорость Вани Vв=L/6. При движении на встречу друг-другу их относительная скорость, Vo, составит: Vо=Vм+Vв=L/12+L/6=L/4. Расстояние L при движении с относительной скоростью L/4 будет пройдено за время T = L/(L/4)=4 минуты. ответ 4 минуты.
Примечание. Для пятого класса понятие относительной скорости может оказаться излишне сложным.
2|x|+3|y| = 6 - этот график симметричен относительно оси ОХ и симметричен относительно оси ОУ, т.к. замены x на -x, y на -y фактически не изменяют само уравнение. Фактически - это ромб, диагоналями которого являются оси OX и OY.
x^2 + y^2 = a, график этого уравнения - это окружность с центром в начале координат и радиусом R = .
При различном радиусе этой окружности будет разное количество пересечений ромба с окружностью. Нужно исследовать этот вопрос геометрически.