Припустимо, що а, в – розміри ділянки.
Формули для периметра та площі прямокутника: Р = 2(a + в), S = а ∙ в. З іншої сторони Р = 40 м
2(а + в) = 40, а + в = 20
Нехай а = х, тоді в = 20 – х.
За змістом задачі число х задовольняє нерівність
0 < х < 20, тобто належить інтервалу (0; 20) .
Складаємо функцію:
S(x) = x(20 – x)
Функція S(x) неперервна на всій числовій прямій, тому будемо шукати її
найбільше і найменше значення на відрізку [0;20] .
Знаходимо критичні точки:
S '(x) = 20 – 2x; 20 – 2x = 0, x = 10
10 Є [0;20]
S(10) = 100; S(0) = 0; S(20) = 0
Найбільшого значення на відрізку [0;20] функція S набуває, якщо х = 10. Якщо
вона досягає найбільшого значення всередині відрізка [0;20], то вона набуває найбільшого значення і всередині інтервала (0, 20). Значить а = 10, тоді в = 20 – 10 = 10.
Отже, прямокутна ділянка буде мати найбільшу площу, якщо її розміри 10х10.
Відповідь: а = 10, в = 10
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так