185. а1=103, d = -2
а) S(n) = (2a1+d(n-1))*n/2. Тогда:
S(8) = (206 - 14)*8/2 = 768
б) S(103) = (206 - 204)*103/2 = 103
186.
а)А₁=7,d=4, n=13;
a(n) = a(1)+d(n-1) = 7+4n-4 = 4n+3 = 55
S(n) = (14+4(n-1))*n/2 = 403
б)А₁=2,d=2,n=40;
A(n) = 2+2*39 = 80;
S(n) = (4+2*39)*40/2 = 1640
в)A₁=56,d=-3,n=11
A(n) = 56 - 3*10 = 26
S(n) = (112-3*10)*11/2= 451
188. Y1= -32, d = 5
a) S(10) = (-64 + 5*9)*10/2 = -95
б) S(26) = (-64 + 5*25)*26/2 = 793
189. a1 = 25, d = -4,5
a) S(16) = (50-4,5*15)*16/2 = - 140
б) S(40) = (50 - 4,5*39)*40/2 = - 2510
Первое уравнение пропорционально второму с коэффициентом пропорциональности, равным 2.
24*2 = 24*х, откуда х = 2.
Тогда у1 = 2, у2 = -2.
ответ: (2; 2), (2; -2).
В третьей достаточно сложить оба уравнения.
получим: х^2 = 1, откуда х1 = 1, тогда у1 = 5, и х2 = -1, тогда у2 = 5.
ответ: (1; 5), (-1; 5)
В первой системе приравняем первое значение у ко второму, получим:
5x^2 - 9x = 5x - 9, откуда х1 = 6, тогда у1 = 21, и х2 = - 2/5, тогда у2 = -11.
ответ: (6; 21), (- 2/5; - 11)