Пусть х - любое натуральное число, тогда следующее натуральное число будет на 1 больше и так далее. Запишем пять последовательных натуральных чисел, первое из которых х: х, х + 1, х + 2, х + 3, х + 4.
Как известно произведение делятся на число 5, если хотябы один из множителей делится на число 5. Так как 5 : 5 = 1, значит последовательность пяти натуральных чисел делится нацело на 5, что и требовалось доказать.
Найдем производную функции: y`(x) = 1 - 4/x^2 Приравняем ее нулю: 1-4/x^2 = 0 4/x^2 = 1 x^2 = 4 x1 = 2, x2 = -2 Нашему промежутку соответствует точка х = 2. Найдем вторую производную и подставим туда нашу точку, чтобы узнать что это за точка: y``(x) = 8/x^3 y``(2) = 8/8 = 1 Положительное значение второй производной, следовательно, х = 2 - точка минимума. Минимум равен y(2) = 2 + 4/2 = 4
На данном промежутке одна экстремальная точка, соответствующая минимума, значит график функции с обоих краев точки уходит вверх, чтобы найти максимальное значение сравним значения краев заданного промежутка: y(1) = 1 + 4/1 = 5 y(3) = 3 + 4/3 = 4 + 1/3 y(1) = 5 больше, значит это точка максимума для данного промежутка.
Пусть х - любое натуральное число, тогда следующее натуральное число будет на 1 больше и так далее. Запишем пять последовательных натуральных чисел, первое из которых х: х, х + 1, х + 2, х + 3, х + 4.
Найдем сумму этих пяти чисел:
х + (х + 1) + (х + 2) + (х + 3) + (х + 4) = 5 * х + 10 = 5 * (х + 2).
Как известно произведение делятся на число 5, если хотябы один из множителей делится на число 5. Так как 5 : 5 = 1, значит последовательность пяти натуральных чисел делится нацело на 5, что и требовалось доказать.
Объяснение:)