Пусть x ч — время мотоциклиста от А до С, тогда расстояние от А до С равно 90x км.
Автомобиль от А до С затратил на 1 час больше, т.е. (x+1) ч, тогда скорость автомобиля на участке от А до С равна 90x/(x+1) км/ч.
Расстояние от С до В равно (300-90x) км. Когда мотоциклист вернулся в А, автомобиль прибыл в В, то время, затраченное автомобилем от С до В равно x ч, следовательно скорость автомобиля на участке от С до В равна (300-90x)/x км/ч.
Так как скорость автомобиля на обоих участках постоянная, получим уравнение:
90x/(x+1) = (300-90x)/x
90x^2 = 300x + 300 — 90x^2 — 90x
6x^2 — 7x — 10 = 0
D = 289
x1 = 2 (ч) время мотоциклиста от А до С
x2 = -5/6 (не удовлетворяет условию задачи)
1) 90·2 = 180 (км) — расстояние от А до С.
ответ: 180
Выделим полный квадрат из выражения
4m²+3mn+2n²=(4m²+3mn+9n²/16)+2n²-9n²/16=(2m+3n/4)²+23n²/16
Квадрат любого числа положителен или равен 0,сумма положительных положительна.Значит знаменатель дроби положителен⇒5/(4m²+3mn+2n²)>0
2
a)5x²+20x+15=5(x²+4x+3)
2x³+9x²+10x+3=x²(2x+1)+4x(2x+1)+3(2x+1)=(2x+1)(x²+4x+3)
(5x²+20x+15)/(2x³+9x²+10x+3)=5(x²+4x+3)/(2x+1)(x²+4x+3)=5/(2x+1)
b)(n^4-9n^3+12n^2+9n-13)/(n^4-10n^3+22n^2-13n) =
=[(n^4+n³)-(10n³-10n²)+(22n²+22n)_(13n+13)]/n(n³-10n²+22n-13)=
=[n³(n+1)-10n(n+1)+22n(n+1)-13(n+1)]/n(n³-10n²+22n-13)=
=(n+1)(n³-10n²+22n-13)/n(n³-10n²+22n-13)=(n+1)/n