Пусть первое число, пропорциональное числу 1 равно х, тогда второе число, пропорциональное числу 2 равно 2х. Т.к. сумма трёх чисел равна 18,то третье число равно 18-х-2х=18-3х По условию, произведение этих трёх чисел должно принимать наибольшее значение. Применим производную для решения задачи: f(x)=x*2x*(18-3x)=2x²(18-3x)=36x²-6x³ f `(x)=(36x²-6x³)`=36*2x-6*3x²=72x-18x²=18x(4-x) f `(x)=0 при 18x(4-x)=0 - + - 04 min max ↓ ↑ ↓ x=4 2x=2*4=8 18-4-8=6
|x-1|>|x+2|-3 |x-1|-|x+2|>-3 Раскроем модули. Приравняем каждое подмодульное выражение к нулю и найдем точки,в которых подмодульные выражения меняют знак: x-1=0 x+2=0 x=1 x=-2 Нанесем эти значения Х на числовую прямую:
(-2)(1)
Мы получили три промежутка.Найдем знаки каждого подмодульного выражения на каждом промежутке:
(-2)(1) x-1 - - + x+2 - + +
Раскроем модули на каждом промежутке: 1)x<-2 На этом промежутке оба подмодульных выражения отрицательны,поэтому раскрываем модули с противоположным знаком: -x+1+x+2>-3 3>-3 - неравенство верное при любых Х на промежутке x<-2
2) -2<=x<1 На этом промежутке первое подмодульное выражение отрицательное(его мы раскроем с противоположным знаком),а второе - положительное, и его мы раскроем с тем же знаком: -x+1-x-2>-3 -2x-1>-3 -2x>1-3 -2x>-2 x<1 С учетом промежутка -2<=x<1 получаем x e [-2;1)
3)x>=1 На этом промежутке оба подмодульных выражения положительные, поэтому раскрываем их без смены знака: x-1-x-2>-3 -3>-3 Неравенство не имеет решений на этом промежутке Соединим решения 1 и 2 промежутков и получим такой ответ: x e(-беск.,1)
тогда второе число, пропорциональное числу 2 равно 2х.
Т.к. сумма трёх чисел равна 18,то третье число равно 18-х-2х=18-3х
По условию, произведение этих трёх чисел должно принимать наибольшее значение. Применим производную для решения задачи:
f(x)=x*2x*(18-3x)=2x²(18-3x)=36x²-6x³
f `(x)=(36x²-6x³)`=36*2x-6*3x²=72x-18x²=18x(4-x)
f `(x)=0 при 18x(4-x)=0
- + -
04
min max
↓ ↑ ↓
x=4
2x=2*4=8
18-4-8=6
ответ: 4; 8; 6 - искомые числа