Упростить выражение:
Задача: Два автомобиля выезжают одновременно из одного города в другой, находящийся на расстоянии 560 км. Скорость первого на 10 км больше скорости второго, и поэтому первый автомобиль приезжает на место на 1 час раньше другого. Определить скорость каждого автомобиля.
Пусть скорость второго автомобиля — х км/ч, тогда скорость первого — х+10 км/ч. Второй был в пути часов, а первый — часов. Зная, что второй автомобиль был в дороге дольше на 1 час, составим и решим математическую модель:
Скорость второго автомобиля — х = 70 км/ч, скорость первого — х+10 = 70+10 = 80 км/ч
скорость первого автомобиля — 80 км/ч;скорость второго автомобиля — 70 км/ч.Задача: При каких значения x функция принимает положительные значения.
ответ: x < 12 или x ∈ (−∞; 12).
x²-2xy+y²-4y²=0
(x-y)² - (2y)² =0
(x-y-2y)(x-y+2y)=0
(x-3y)(x+y)=0
x-3y=0 x+y=0
x=3y x= -y
При x=3y:
(3y)²-3y*y-2*3y-3y=6
9y²-3y²-6y-3y=6
6y²-9y-6=0
2y²-3y-2=0
D=3²-4*2*(-2)=9+16=25
y₁=(3-5)/4=-0.5 x₁=3*(-0.5)=-1.5
y₂=(3+5)/4=2 x₂=3*2=6
При x=-y:
(-y)² - (-y)*y - 2*(-y) -3y=6
y²+y²+2y-3y-6=0
2y²-y-6=0
D=1-4*2*(-6)=1+48=49
y₁=(1-7)/4=-1.5 x₁=-(-1.5)=1.5
y₂=(1+7)/4=2 x₂=-2
ответ: (-2; 2); (-1.5; -0.5); (1.5; -1.5); (6; 2).