пусть О центр окружности, тогда
пусть ОК- перпендикуляр к ВС,
ОК и есть радиус треугольника
треугольники ОВС и КВО подобные, так как они оба прямоугольные, а угол В у них общий, тогда
ОК/ВО=ОС/ВС
ОС=6/2=3, ток как центр полувписаного круга делит пополам(равнобедренный ведь треугольник)
ВО^2=BC^2-OC^2=25-9=16
тогда
ОК=ОВ*ОС/ВС=4*3/5=12/5
тоесть радиус = 12/15
а далее расмотрим треугольник ВОК
BK^2=BO^2-OK^2=16-144/25=(400-144)/25=256/25=((16/5)^2
BK=16/5
КС=5-16/5=(25-16)/5=9/5
ответ
радиус 12/5
делит на отрезки
возле основы 9/5
возле вершины 16/5
ответ: P=20/39
Объяснение:
Найдем общее количество вариантов , когда в 5-ти взятых билетах есть первый из выйгрышных билетов , а второй туда не попал .
В этом случае другой выйгрышный билет исключается из возможных 13 кандидатов. А первый билет уже присутствует в данной пятерке.
Таким образом общее число таких вариантов :
C (11 ;4 ) = 11!/(4!*7!)
Обратная ситуация , когда второй из выйгрышных билетов есть в пятерке , а первого нет .
Таким образом общее число благоприятных исходов :
Nблаг = 2*11!/(4!*7!)
Число всех исходов :
Nобщ = С (13;5) = 13!/(5!*8!)
P= Nблаг/Nобщ = (2*11!/(4!*7!) )/( 13!/(5!*8!) ) = (2*11!*5!*8! )/ (13!*4!*7! )=
= (2*5*8)/(12*13) = (2*5*2)/(3*13) = 20/39