1. а) у=х-1 к=1 l=-1
и) у= -0,5*х+2 k=-0.5 l=2
2. а) у=1 при х=0 следовательно у=1 точка пересечения с осью ординат
и) у=2 при х=0 следовательно у=2 точка пересечения с осью ординат
для построения прямых вычислим еще точка пересечения с осью обсцисс:
а) х=1 при у=0 и) х=4 при у=0
выполняем построение. рисуем оси, ставим направления и выбираем единичные отрезки:
| Y
|
|
|
|
| 2
|
| 1
|
0xx> X
| 1 4
|
теперь аккуратно соединим точку 1 на оси ОУ и точку 1 на оси ОХ - это прямая а). Также аккуратно соединим точку 2 на оси ОУ и точку 4 на оси ОХ - это прямая и)
Объяснение:
|x -1| + |x +3| ≤ 4
Решим это неравенство методом интервалов.
Найдем нули подмодульных выражений:
х - 1 =0 → х = 1
х + 3 = 0 → х = - 3
Эти значения разбивают числовую ось на три интервала:
х ∈ (-∞; - 3] ; (-3; 1]; (1; + ∞)
Решим заданное неравенство на каждом из этих промежутков.
1) 1) x∈ (-∞; - 3], при этом неравенство примет вид:
- (х - 1) - (х + 3) ≤ 4
-х + 1 - х - 3 ≤ 4
-2х ≤ 6
х ≥ - 3
Пересекая найденное решение x∈ [- 3; +∞) c рассматриваемым интервалом x∈ (-∞; - 3] , получаем решение x = - 3
2) х ∈ (-3; 1]
- (х - 1) + х + 3 ≤ 4
0*х ≤ 4 → х - любое число. Учитывая интервал, х х ∈ (-3; 1]
3) х ∈ (1; + ∞)
х - 1 + х + 3 ≤ 4
2х ≤ 2
х ≤ 1 → х ∈ (- ∞; 1]
Для получения окончательного ответа объединим полученные решения:
x ∈ [- 3] ∪ (-3; 1] ∪ (- ∞; 1]
ответ: х ∈ [-3; 1]
135x^7/8x-4
Объяснение: