Проведем отрезки OB и OC, как показано на рисунке. Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды) Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2. По теореме Пифагора: OB2=OE2+EB2 OB2=242+(20/2)2 OB2=576+100=676 OB=26 OB=OC=26 (т.к. OB и OC - радиусы окружности) По теореме Пифагора: OC2=CF2+FO2 OC2=(CD/2)2+FO2 262=(CD/2)2+102 676=(CD/2)2+100 (CD/2)2=576 CD/2=24 CD=48 ответ: CD=48
Пусть A - объём работы, которую предстоит выполнить. Пусть t ч - время, за которое может выполнить эту работу один фотограф и t+2 ч - второй фотограф. Тогда за 1 час один фотограф выполняет A/t часть работы, а другой фотограф - A/(t+2) часть работы. Работая же вместе, они за 1 час выполняют A/t+A/(t+2) часть работы. По условию, [A/t+A/(t+2)]*15/8=A. Сокращая на A, приходим к уравнению [1/t+1/(t+2)]*15/8=1, которое приводится к квадратному уравнению 4*t²-7*t-15=0. Это уравнение имеет решения t1=3 ч и t2=-1,25 ч. Но так как t>0, то t=3 ч. Тогда t+2=5 ч. ответ: 3 ч и 5 ч.
Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды)
Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2.
По теореме Пифагора:
OB2=OE2+EB2
OB2=242+(20/2)2
OB2=576+100=676
OB=26
OB=OC=26 (т.к. OB и OC - радиусы окружности)
По теореме Пифагора:
OC2=CF2+FO2
OC2=(CD/2)2+FO2
262=(CD/2)2+102
676=(CD/2)2+100
(CD/2)2=576
CD/2=24
CD=48
ответ: CD=48