Решение на фотографии.
Для того, чтобы найти значение cos a при tg a =2 и 0, воспользуемся следующей тригонометрической формулой: 1 + tg^2 a = 1 / (cos^2 a) и выразим из нее косинус.
1 + tg^2 a = 1 / (cos^2 a)
(1 + tg^2 a) * (cos^2 a) = 1
cos^2 a = 1 / (1 + tg^2 a)
cos a = sqrt (1 / (1 + tg^2 a)), где sqrt - корень квадратный.
Далее найдем косинус при значении tg a =2.
1) cos a = sqrt (1 / (1 + 2 ^2 )) = sqrt (1 / 5) = 0.4472
Далее найдем косинус при значении tg a = 0.
2) cos a = sqrt (1 / (1 + 0 ^2 )) = sqrt (1 / 1) = 1.
ответ: 0.4472, 1.
Объяснение:
Объяснение:
x²+2x-35=0
Δ=4+140=144
√Δ=12
x1=(-2-12)/2=-14/2=-7
x2=(-2+12)/2=10/2=5