М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
лаллах12
лаллах12
09.10.2022 17:56 •  Алгебра

Знайдіть область визначення функції


Знайдіть область визначення функції

👇
Ответ:
malinasch
malinasch
09.10.2022

Відповідь:

x∈R\{-5}

Пояснення:

x+5≠0

x≠-5

область визначення функції:

x∈R\{-5}

4,6(58 оценок)
Открыть все ответы
Ответ:
хорошист547
хорошист547
09.10.2022

x2 + 4x + 8 = 0

Найдем дискриминант квадратного уравнения:

D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16

Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.

4x2 - 12x + 9 = 0

Найдем дискриминант квадратного уравнения:

D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0

Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:

x = 122·4 = 1.5

3x2 - 4x - 1 = 0

Найдем дискриминант квадратного уравнения:

D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28

Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:

x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024

x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635

2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4,8(37 оценок)
Ответ:
dana085
dana085
09.10.2022

Объяснение:

выражение в квадратном корне должно давать положительный результат, иначе выражение не

имеет смысла

1) √х. х не должен быть –1 или каким-то другим отрицательным числом, поэтому выражение имеет смысл при х (0; +∞)

2) √х². Здесь х также может быть и отрицательным, поскольку он возведён во вторую степень, которая даёт положительный результат в любом случае поэтому: х (–∞; +∞)

3) √–х. х не должен быть положительным, поскольку при положительном х у нас получится отрицательный итог, например при х=1 =√–1, это недопустимо, поэтому х должен быть: х≤0 и значение следующие: х (–∞; 0)

5) √25х. х должен быть 0 или положительное значение:

х≥0, поэтому х (0; +∞)

4) √–3х. х должен быть отрицательным, чтобы выражение давало положительный результат:

х (–∞; –1)

6) √0,01х, х≥0; х (0; +∞)

7)

\sqrt{ \frac{ - 7x}{5} }

х ≥ 0; х (–∞; 0)

8)

\sqrt{81x {}^{2} }

х может быть как положительным так и отрицательным, поскольку он возведён во вторую степень и значение выражения всегда будет положительным: х (–∞; +∞)

4,5(89 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ