Искомая функция
.
Найдем значения искомой функции в заданных точках х:





Кроме этого, для каждого из аргументов есть еще и экспериментальное значение, которое обозначим через функцию
:

Составим функцию
, которая будет суммировать квадраты разностей значений функций
и
соответствующих аргументов:

Исследуем эту функцию на экстремум.
Найдем частные производные:






Необходимое условие экстремума: равенство нулю частных производных:

Домножим второе уравнение на (-3):

Складываем уравнения:


Подставим значение а во второе уравнение исходной системы:




Точка (0.5; -0.3) - предполагаемая точка экстремума.
Найдем вторые частные производные функции:



Рассмотрим выражение:

Так как
и
, то точка (0.5; -0.3) является точкой минимума.
Значит, в точке (0.5; -0.3) функция
имеет минимум.
Тогда, значения
и
есть искомые коэффициенты функции
.

ответ: 
2х-5-(х-2)=7
2х-5-х+2=7
х-3=7
х=7+3
х=10
значит, во второй бригаде было 10 рабочих, а стало 10-2=8 рабочих
а в первой бригаде было 2*10=20 рабочих, а стало 20-5-15 рабочих.
ответ: в первой бригаде стало 15 рабочих, а во второй 8 рабочих