1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ... a1(1) = 1; d1 = 2 Миша - тоже по арифметической прогрессии a2(1) = 2; d2 = 2 Всего Боря взял S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60 7 < n < 8 Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13. И у Бори получилось S1(7) = 7^2 = 49 конфет. Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11. Миша последний раз взял 14. Это тоже 7-ой раз. Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56 Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11 На каждом этаже квартир больше 2, но меньше 7, то есть 3. Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира. Квартира номер 42 - последняя во 2 подъезде. Квартир с номерами больше 42 во 2 подъезде нет. Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры. Квартира номер 42 - последняя на 3 этаже.
Если так не видишь,что эти уравнения похожи на обычные квадратные, то сделай замену х^2=t
а) х^4-3х^2+2=0 сделаем замену и получим:
t^2-3t+2=0, дальше по теореме Виетта ищем корни, которые видны сразу:
t=2
t=1 , дальше возвращаемся к изначальным переменным:
х^2=2
х^2=1, отсюда:
х=корень из 2
х=минус корень из 2
х=1
х=-1
Я думаю ты поняла и поэтому я опустила моменты с заменами. Если непонятно спрашивай
б)х^4-10х^2+9=0
х^2=9
х^2=1
ответ:х=3
х=-3
х=1
х=-1
в)х^4-5х^2+4=0
х^2=4
х^2=1
ответ:х=2
х=-2
х=-1
х=1
г)х^4-26х^2+25=0
х^2=25
х^2=1
ответ:х=5
х=-5
х=1
х=-1
д)х^4-20х^2+64=0
х^2=16
х^2=4
ОТвет:х=4
х=-4
х=2
х=-2