М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
geptor2012
geptor2012
21.03.2022 19:06 •  Алгебра

Ну можене мне сказать все 4 правильние ответа


Ну можене мне сказать все 4 правильние ответа

👇
Открыть все ответы
Ответ:
Mished
Mished
21.03.2022
Иррациональное число - это число, не являющееся рациональным, то есть такое, которое нельзя представить в виде отношения двух целых чисел. 

Если Вы помните, рациональные числа были введены потому, что во множестве целых чисел не всегда можно выполнить деление. Например, существует целое число, которое является результатом деления 8 на 2, но не существует целого числа, которое является результатом деления 8 на 3. Поэтому были введены рациональные числа, то есть дроби вида p/q. Целые числа стали их подмножеством, когда q=1. 

Для выполнимости деления рациональных чисел достаточно, но вот для извлечения корней - нет. Например, не существует рационального числа, которое было бы результатом извлечения квадратного корня из двух. (Это доказывается в Вашем учебнике, я уверен. Если не поняли, напишите, объясню.) Поэтому производят дальнейшее расширение системы чисел. К рациональным числам добавляют ещё и иррациональные, и все они вместе образуют множество действительных чисел. 

Если не вдаваться в подробности, то рациональные числа можно отличить от иррациональных следующим образом. Рациональные числа, если их записать десятичной дробью, обязательно дадут конечную или бесконечную периодическую дробь. Это тоже легко доказать. Иррациональные же числа, записанные в виде десятичной дроби, оказываются представленными бесконечной НЕпериодической дробью. 

Типичным примером иррационального числа является корень квадратный из двух. Пи - тоже иррациональное число, причем в определенном смысле более сложное, чем корень из двух, потому что Пи нельзя представить в виде корня из рационального числа. Но это уже немножко высший пилотаж
4,4(47 оценок)
Ответ:
dashak20022
dashak20022
21.03.2022

b₁-первый член прогрессии, q -ее знаменатель, bₙ=b₁*qⁿ⁻¹- ее n-й член.

По условию

b₁-b₁q²=9

b₁q-b₁q³=19,  разделим  второе уравнение на первое. получим.

(b₁q-b₁q³)/(b₁-b₁q²)=19/9; b₁q(1-q²)/(b₁*(1-q²)=19/9; ⇒q=19/9; b₁*(1-361/81)=9;b₁=9/((-280)/81)=-729/280;

b₂= b₁q = (-729*19)/(280*9) = - 81*19/280=-1539/280

b₃=b₁q²= (-729/280)*(361/81) = (-9/280)*361=- 3249/280

b₄=b₁q³=(-729/280)*(361*19/729)= -6859/280

2. а₁-первый член прогрессии, q -ее знаменатель, аₙ=а₁*qⁿ⁻¹- ее n-й член.

а₂=а₁*q; а₄=а₁*q³; а₆=а₁*q⁵;

а₁*q³-а₁*q=-45/32⇒а₁*q*(q²-1)=-45/32

а₁*q⁵-а₁*q³=-45/512⇒а₁*q³*(q²-1)=-45/512, разделим второе уравнение на первое. получим q²=1/16, q=±1/4

Если q=1/4, то а₁=(-45/32)/(q*(q²-1))=(-45*4*16/(32*(-15)))=6

Если q=-1/4, то а₁=(-45/32)/(q*(q²-1))=(-45*4*16/(32*15))=-6

4,4(6 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ