Первое уравнение - график окружности с центром в точке (0;0), то есть в начале координат, радиусом 3.
Второе уравнение y=x^2+p, график параболы, ветви которой направлены вверх, и которая двигается по оси Oy вверх или вниз(но не влево и вправо) в зависимости от значения p. Парабола будет иметь с графиком окружности 3 точки пересечения (а значит и система будет иметь три решения), когда вершина параболы будет лежать на окружности, а две ветви параболы будут пересекать окружность в 2 точках. Вершина параболы должно лежать в точке (0; -3) чтобы это выполнялось, а значит p=-3
P.S. если что-то не понятно, напишите.
Можно решить графическим
x^2+y^2=R^2 (уравнение
окружности с радиусом R и центром в начале координат)
1)Построим грвфик первого уравнения
x^2+y^2=3^2
Координаты центра окружности(0;0);Радиус R=3
2)Построим график второго уравнения
y-x^2=p
y=x^2+p (парабола, ветви вверх, координаты вершины(0;p))
Если p увеличивается, то парабола смещается вверх вдоль оси y и наоборот, если p уменьшается
3) Мы имееем:
- окружность с R=3 с центром в начале координат
- параболу, которая двигается только вдоль оси y, ветви вверх
Мы уже имеем 2 решения благодаря ветвям параболы, которые пересекают окружность в 2-ух точках. Как получить третью точку пересечения(т.е третье решение)? Сместим параболу так, чтобы ее вершина касалась окружности И ветви также продолжали пересекать окружность в 2 точках
Сместим с параболу на -3, т.е вниз на 3 точки(3 потому что радиус окружности также равен 3)
Получим конечный результат(см рис.). 3 решения при p=-3
ответ: p=-3
13
Объяснение:
Угловой коэффициент касательной к графику функции f(x) в точке с абсциссой x0 равен значению производной в этой точке: k = f'(x0).
Находим производную f(x):
Находим значение производной в точке x0: