Все числа не превосходящие 200 и кратные 5 можно представить в виде числовой прогрессии: а₁=5 первый член an=200 последний член d=5 разница Найдем количество членов последовательности. an=a₁+d(n-1) ⇒ n=(an-a₁)/d+1 n=(200-5)/5+1=40 натуральных чисел кратных 5. Теперь найдем среди них те которые кратны 13, т.к. они еще делятся на 5, то эти числа кратны 13*5=65 Их можно посчитать перебором: 65, 130, 195 всего 3 числа
40-3=37 натуральных чисел, не превосходящих 200, которые делятся на 5, но не делятся на 13
t=12/5
k=22/5
Объяснение:
k/3+t/2=8/3
k/2+t/3=3
Избавляемся от дробного выражения, общий знаменатель для первого и второго уравнения 6, надписываем над числителями дополнительные множители:
2*k+3*t=2*8
3*k+2*t=6*3
2k+3t=16
3k+2t=18
Выразим k через t в первом уравнении и подставим выражение во второе уравнение:
2k+3t=16
2k=16-3t
k=(16-3t)/2
3[(16-3t)/2]+2t=18
Умножим второе уравнение на 2, чтобы избавиться от дробного выражения:
3(16-3t)+4t=36
48-9t+4t=36
-5t=36-48
-5t= -12
t=12/5
k=(16-3*12/5)/2
k=(16-7,2)/2=22/5
k=22/5
При проверке данных значений в первом уравнении 8/3=8/3, во втором 3=3, значения k и t вычислены верно.