х-скорость первого;
у-скорость второго;
Необходимо составить систему уравнений первым уравнением будет:
3⅓(х+у)=30;
по второй части условия видно что первый бы шел 4,5 часа, а второй 2,5 следовательно получаем уравнение:
4,5х+2,5у=30
домножим первое уравнение на 3 получим:
10х+10у=90;
домножим второе уравнение на 2, получим:
9х+5у=60;
домножим второе уравнение на 2 и выразим оттуда 10у:
10у=120-18х;
подставим 10у в первое уравнение, откуда находим: х=3,75
далее подставляем значение х в любое уравнение и получаем у=5,25
1) Если A=√3, то y=x²+√3,
(x²+√3)²+x²=3
x⁴+(2√3+1)x²=0
x²(x²+2√3+1)=0
x=0; x²+2√3+1=0 действительных корней не имеет.
Итак, в этом случае 1 решение.
2) Если A=-√3, то y=x²-√3,
(x²-√3)²+x²=3
x⁴+(-2√3+1)x²=0
x²(x²-2√3+1)=0
x=0; x²=2√3-1>0 - дает еще два решения.
Итак, в этом случае 3 решения.
Все это можно понять и из графиков. Первое уравнение задает окружность радиусом √3, а второе - параболу y=x² сдвинутую на А по оси Оу. В силу симметрии графиков относительно оси Оу, понятно что всегда будет четное количество решений (либо не будет вообще). 1 решение или 3 возможны только в случае, когда вершина параболы y=x²+A совпадает с верхней или нижней точкой окружности, т.е. при A=√3 или А=-√3. В первом случае, очевидно одно решение. А во втором не так очевидно, что 3 решения, но это проверяется, как я сделал выше.