Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной. Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
Найдем значения Х, которые обращают подмодульные выражения в ноль: 1)x^2-2x-15=0 ОДЗ:6x-27>0;x>4,5 x1=-3; x2=5 2)x^2-8x+12=0 x1=-2; x2=6 Отметим эти точки на числовой прямой:
-3-256
Точки разбивают числовую ось на 5 промежутков. Рассмотрим каждый: 1)x<-3 Первое подмодульное выражение отрицательно на этом промежутке, и его мы раскроем со сменой знака. Второе - положительно. Его раскроем без смены знака: -x^2+2x+15+x^2-8x+12=6x-27 x=4,5 - число не принадлежит данному промежутку 2)-3<=x<-2 Подмодульные выражения мы раскроем также как и в первом случае и получим х=4,5. Этот корень также не принадлежит промежутку. 3)-2<=X<5 Оба подмодульных выражения отрицательны: -x^2+2x+15-x^2+8x-12=6x-27 x1=-3; x2=5 - оба корня не принадлежат рассматриваемому числовому промежутку 4)5<=x<6 x^2-2x-15-x^2+8x-12=6x-27 6x-27=6x-27 Это значит, что все числа этого промежутка являются корнями уравнения. 5)x>=6 x^2-2x-15+x^2-8x+12=6x-27 x1=2; x2=6 Только х=6 принадлежит промежутку. Итак, у нас получилось два целых корня: 5 и 6. Их произведение =30.
Відповідь:
-8х3у4.
Пояснення:
Необхідно просто перемножити вирази.
-2х2у2*4ху2 = -8х3у4.