Из города a в город в, расстояние между которыми 60км, вышел пешеход.через 3,5 часа навстречу ему выехал велосипедист,скорость которого на 14 км/ч больше скорости пешехода.найдите скорости пешехода и велосипедиста,если они встретились ровно на середине пути между а и в
Х км проехал первый велосипедист до встречи, 50-х км проехал второй велосипедист до встречи. х/2 км/ч - скорость первого велосипедиста, (50-х)/2 км/ч - скорость второго велосипедиста. ч - время всего пути первого велосипедиста. ч - время всего пути второго велосипедиста. Разница во времени 1 ч 40 мин = часа. Уравнение . После преобразований . Корни уравнения 30 и 100. Через х выразили расстояние, пройденное первым велосипедистом до встречи. Оно не может быть больше всего пути в 50 км. Поэтому 100 не подходит к задаче. 30 : 2 = 15 км/ч скорость первого велосипедиста. (50 - 30) : 2 = 10 км/ч скорость второго велосипедиста.
Х км проехал первый велосипедист до встречи, 50-х км проехал второй велосипедист до встречи. х/2 км/ч - скорость первого велосипедиста, (50-х)/2 км/ч - скорость второго велосипедиста. ч - время всего пути первого велосипедиста. ч - время всего пути второго велосипедиста. Разница во времени 1 ч 40 мин = часа. Уравнение . После преобразований . Корни уравнения 30 и 100. Через х выразили расстояние, пройденное первым велосипедистом до встречи. Оно не может быть больше всего пути в 50 км. Поэтому 100 не подходит к задаче. 30 : 2 = 15 км/ч скорость первого велосипедиста. (50 - 30) : 2 = 10 км/ч скорость второго велосипедиста.
x- скорость пешехода
30-3,5х - до встречи
30/(x+14)=(30-3,5x)/x
30x=30x+420-3,5x^2-49x
3,5x^2+49x-420=0
x=(-49+91)/6=7
x+14=21
ответ 7 и 21 км/ч соответственно