Два фермера, работая вместе, могут вспахать поле за 25 часов.
Производительность труда у первого и второго относятся как 2:5.
Фермеры планируют работать поочередно.
Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
Пусть Х-производительность 1-го, У-производительность 2-го.
Система:
х+у=125
2х=5у
Последовательно:
2х+2у=2/25
2х-5у=0
7у=2/25 и у=2175
Тогда х=135
Итак, производительности мы нашли.
Поочередно фермеры работали 45,5 часа = 91/2 часа.
Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов.
Уравнение:
(91/2-Т)⋅(1/35)+Т⋅(2/175)=1
имеет корень Т=17,5
Проверка.
1. проверим , что х+у=125
1/35+2/175=(70+175)/(175⋅35)=7/175=1/25
2. проверим, что 2х=3у:
2/35=5⋅2/175
3. Проверим уравнение при поочередной работе:
Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов
28⋅135+(352)⋅(2175)=28/35+1/5=1
ОТВЕТ: 17,5
3
1
x
2
+x−
3
10
<0 ⇒ x
2
+3x−10<0 ,
D=9+40=49=7
2
, x
1
=−5 , x
2
=2
(x+5)(x−2)<0
znaki: +++(−5)−−−(2)+++
x∈(−5 ;2 )
2) x
2
+10x+25>0 , (x+5)
2
>0 → x+5
=0 , x
=−5
x∈(−∞;−5 )∪(−5 ;+∞)
3) 3x
2
−24x+48<0 , x
2
−8x+16<0 , (x−4)
2
<0 ,
x∈∅
\begin{gathered}4)\ \ x^2+\dfrac{2}{3}\, x+\dfrac{4}{3} > 0\ \ \ ,\ \ \ 3x^2+2x+4 > 0\ \ ,D/4=1-12=-11 < 0\ \ \Rightarrow \ \ \ x\in \varnothing 5)\ \ -4x^2+5x-2 > 0\ \ \ ,\ \ \ 4x^2-5x+2 < 0\ \ ,\ \ D=25-32=-7 < 0\ ,x\in \varnothing\end{gathered}
4) x
2
+
3
2
x+
3
4
>0 , 3x
2
+2x+4>0 ,
D/4=1−12=−11<0 ⇒ x∈∅
5) −4x
2
+5x−2>0 , 4x
2
−5x+2<0 , D=25−32=−7<0 ,
x∈∅