В решении.
Объяснение:
Сократить дробь:
а) (-16с⁵)/12с³=
сократить (разделить) 16 и 12 на 4, с⁵ и с³ на с³:
=(-4с²)/3=
= -4с²/3;
б) (4a-4b)/(3a-3b)=
=4(a-b)/3(a-b)=
сократить (разделить) (a-b) и (a-b) на (a-b):
=4/3;
в) (а²-5а)/(25-а²)=
=(а²-5а)/ -(а²-25)=
=а(а-5)/ -[(а-5)(а+5)]=
сократить (разделить) (а-5) и (а-5) на (а-5):
= -а/(а+5);
г) a⁵b⁷/a⁷b⁵=
при делении показатели степеней вычитаются (при одинаковых основаниях):
сократить (разделить) а⁵ и а⁷ на а⁵, b⁵ и b⁷ на b⁵:
=1*b²/a²*1=
=b²/a²;
д) (3х³+3ху²)/(6ух²+6у³)=
=3х(х²+у²)/6у(х²+у²)=
сократить (разделить) 3 и 6 на 3, (х²+у²) и (х²+у²) на (х²+у²):
=х/2у;
е) (b²-4)/(8-b³)=
в числителе разность квадратов, развернуть, в знаменателе разность кубов, развернуть:
=[(b-2)(b+2)] / (2³-b³)=
=[(b-2)(b+2)] / -(b³-2³)=
=[(b-2)(b+2)] / -[(b-2)(b²+2b+4)]=
сократить (разделить) (b-2) и (b-2) на (b-2):
= -(b+2)/(b²+2b+4).
найдем точки пересечения
x^2 - 4x + 3 = 8
x^2 - 4x -5=0
х= -1 х = 5
x^2 - 12x + 35 = 8
x^2 - 12x + 27=0
х = 3 х= 9
x^2 - 4x + 3 =x^2 - 12x + 35
8х = 32
х = 4
1) интеграл от 4 до 5 (8-(x^2 - 4x + 3 ))= 8х -x^3 /3 +2x^2 -3x = 25 -125/3 +50 - 32 +64/3 -32 =11 61/3 = 31 1/3
2) интеграл от3 до 4 (8-(x^2 - 12x + 35)) = 8х - x ^3 /3 +6x^2 -35x = -27*4 -64/3 +96 +27*3 +9 -54 = 24 -21 1/3 =2 2/3
31 1/3 +3 2/3 = 35
1. По формуле (а-в) (а+в)=а²-в²
(4х)²-1²=16х²-1²
х²=16, х=4.
ответ: 4.
2. Используем переместительный закон:
(3-2n)(3+2n)
По формуле из первого примера:
9-4n²
4n²=9
n²=2,25, n=1,5.
ответ: 1,5.
3. По формуле:
(5р)²-(4а)²
25р²-16а²=9а²
а²=9, а=3.
ответ: 3.
4. Переместительный закон:
(4х+8с²)(4х-8с²)
По формуле:
16х²-64с^4
Разделим на 16:
х²-16с^4.
5. По формуле:
36-b^4
b^4=-36
6. По формуле:
0,8²×а^6-1= (4/5)²×а^6-1= (16/25)а^6-1 или 0,64а^6-1