Первую ещё не придумала, а вот вторая:
Чтобы найти вероятность того, что точка,брошенная в круг, попадёт в треугольник, надо найти отношение площади правильного треугольника к площади окружности
S(треуг)=(а:2*корень(3))/ S 4
S(окруж)=Pі *r^2
Мы знаем связь между стороной правильного треугольника и радиусом описаной окружности:
r=a/корень3
Тогда, вероятность = S(треуг)/ S(окруж)= ((а:2*корень(3))/ S 4) / (Pі *r^2) = ((а:2*корень(3))/ S 4) * (Pі *а^2) /3=(3*корень3)/ 4Pі
Если надо, можно примерно вищитать:
(3*корень3)/ 4Pі = 3*1,73/4*3,14=5,19/12,56=0,41
ответ:0,41
cn = n² - 1
проверяем все заданные числа:
1=n² - 1
n²=0
n=0, т.к. n должно ∈n, то делаем вывод, что число 1 не является членом прогрессии
2=n² - 1
n²=3
n=±√3, т.к. n должно ∈n, то делаем вывод, что число 2 не является членом прогрессии
3=n² - 1
n²=4
n=±√4 = ±2, т.к. n должно ∈n, то делаем вывод, что число 3 будет является членом прогрессии (втолрой ее член).
делаем проверку:
найдем c2: c2=4-1=3 - верно
4=n² - 1
n²=5
n=±√5, т.к. n должно ∈n, то делаем вывод, что число 4 не является членом прогрессии
ответ: число 3 является членом прогрессии