1.
216х² - 6у⁴ = 6 * (36х² - у⁴) = 6*(6х - у²)(6х + у²) (ответ Е),
2.
а)
S = 6а² = 6*(3х - 4)² = 6*(9х² - 24х + 16) = 54х² - 144х + 96,
б)
V = а³ = (3х - 4)³ = 27х³ - 108х² + 144х - 16,
3.
а)
4,3² - 2,58 + 0,3² = 4,3² - 2*4,3*0,3 + 0,3² = (4,3 - 0,3)² = 4² = 16,
б)
(44² - 12²) / (56² - 16²) = (44 - 12)(44 + 12) / (56 - 16)(56 + 16) =
= (32*56) / (40*72) = 28/45,
4.
1 число - х,
2 число - (х-52),
х² - (х-52)² = 208,
х² - х² + 104х - 2704 = 208,
104х = 208 + 2704,
104х = 2912,
х = 28 - 1 число,
х-52 = 28 - 52 = -24 - 2 число
Объяснение:
Надо найти или вывести формулу, связывающую то, что нужно найти( ctgα) и то, что дается( sinα)/
так как ctgα=cosα/sinα), то нам достаточно найти cosα из основного тригонометрического тождества и подставить в формулу ctgα=cosα/sin):
cos²α+sin²α=1 - основное тригонометрическое тождество
Отсюда, cos²α=1-sin²α
cos²α=1-(-8/19)²=1-64/361= 297/361 = 9*33/361;
cos²α=9*33/361⇒cosα=±√9*33/361=±3√33/19 так как α∈[3π/2;2π], тоcosα в этой четверти положительный.Тогда cosα=3√33/19
Теперь найдем√33ctgα=√33* (3√33/19)/-8/19=-33*3/8=-99/8=-12,375
ответ:-12,375