1.
а)x^3-2x = х(х²-2)
б)5a^2-10ab+5b^2 = 5(a^2-2ab+b^2) = 5(a-b)²
в)cm-cn+3m-3n = (cm-cn)+(3m-3n) = с(m-n)+3(m-n) = (с+3)(m-n)
2.
2(p+q)²-p(4q-p)+q² = 3p²+3q² при любых p и q
2(p+q)²-p(4q-p)+q² = 2(p²+2pq+q²) -4pq+p²+q² = 2p²+4pq+2q² -4pq+p²+q² = 3p²+3q²
таким образом, мы привели левую часть к правой, тем самым доказав, что значения выражений будут равны при любых p и q
3.
(x-3)(x+3) = x(x-2)
х²-9=х²-2х
2х=9
х=4,5
ответ: при х=4,5
4.
а)(a-3b)(a+3b)+(2b+a)(a-2b) = (a²-9b²) + (a²-4b²) = 2a²-13b²
б)(p+q)(q-p)(q²+p²) = (q²-p²)(q²+p²) = q⁴-p⁴
5.
x³-27-3x(x-3)=0
(x³-3³)-3x(x-3)=0
воспользуемся формулой разности кубов:
(х-3)(х²+3х+9)-3x(x-3)=0
(х-3)(х²+3х+9-3х)=0
х-3=0 или (х²+3х+9-3х)=0
х=3 х²+9=0
х²=-9 - решений нет
ответ: х=3
fнаиб = 4; f наим = 0
Объяснение:
28б
f(x) = x³ - 6x² + 9x при х ∈ [0; 3]
Значения функции на концах интервала
f(0) = 0
f(3) = 27 - 54 + 27 = 0
Производная функции
f'(x) = 3x² - 12x + 9
Точки экстремумов
3x² - 12x + 9 = 0
х² - 4х + 3 = 0
D = 16 - 12 = 4 = 2²
x₁ = 0.5(4 - 2) = 1
x₂ = 0.5 (4 + 2) = 3
В точке х₁ = 1 находится локальный максимум
f(1) = 1 - 6 + 9 = 4 - максимальное значение
В точке х₂ = 3 находится локальный минимум
f(3) = 0
Сравнивая со значениями функции на границах интервала, делаем вывод. что наибольшее значение функции на заданном интервале равно 4. наименьшее равно 0.