Найти первый положительный член арифметической прогрессии -10,2; -8,3; ...
Арифметическая прогрессия - это последовательность чисел, каждый член которой, начиная со второго, равен предыдущему, увеличенному на одно и тоже число (разность арифметической прогрессии, обозначается d).
По условию а₁ = -10,2, a₂ = -8,3, тогда d = a₂ - a₁ = -8,3 - (-10,2) = -8,3 + 10,2 = 10,2 - 8,3 = 1,9.
an = a₁ + d(n - 1) - формула n-го члена
По условию аn > 0, поэтому решим получившееся неравенство
-12-8х<7x+12. 1. переносим числа с "х"-сами в левую сторону, а обычные числа в правую: -8х - 7х < 12+12. ( числа переносятся с противоположными знаками, если не знала) 2. Теперь все складываем: -15х< 24. 3. теперь умножим на -1( для того, что бы знак минуса перед "х" ушел), при умножении на отрицательное число все знаки меняются на противоположные, включая знак неравенства. т.е: 15х > -24. 4. Сократим обе части на 15( поделим тобишь): 15х :15 >24 :15 х>1,6. все. если нужно методом интервалов, то просто начерти прямую, отметь на ней точку 1,6( выколотая) и заштрихуй сторону прямой, идущей после числа, и промежуток получится такой: (1,6 ;+∞)
Найти первый положительный член арифметической прогрессии -10,2; -8,3; ...
Арифметическая прогрессия - это последовательность чисел, каждый член которой, начиная со второго, равен предыдущему, увеличенному на одно и тоже число (разность арифметической прогрессии, обозначается d).
По условию а₁ = -10,2, a₂ = -8,3, тогда d = a₂ - a₁ = -8,3 - (-10,2) = -8,3 + 10,2 = 10,2 - 8,3 = 1,9.
an = a₁ + d(n - 1) - формула n-го члена
По условию аn > 0, поэтому решим получившееся неравенство
-10,2 + 1,9(n - 1) > 0,
-10,2 + 1,9n - 1,9 > 0,
1,9n - 12,1 > 0,
1,9n > 12,1,
19n > 121,
n > 121/19 = 6 целых 7/19.
Значит, n = 7.
Найдем а₇:
а₇ = -10,2 + 1,9(7 - 1) = -10,2 + 1,9 · 6 = -10,2 + 11,4 = 11,4 - 10,2 = 1,2.
ответ: 1,2.