1) sin x = √2/2
x = (-1)ⁿ × arcsin √2/2 + πn, n∈Z
x = (-1)ⁿ × π/4 + πn, n∈Z
2) sin x = -√2/2
x = (-1)ⁿ × arcsin (-√2/2) + πn, n∈Z
x = (-1)ⁿ × -arcsin √2/2 + πn, n∈Z
x = (-1)ⁿ × (-π/4) + πn, n∈Z
3) sin x = -√3/2
x = (-1)ⁿ × arcsin (-√3/2) + πn, n∈Z
x = (-1)ⁿ × -arcsin √3/2 + πn, n∈Z
x = (-1)ⁿ × (-π/3) + πn, n∈Z
4) sin x = √3/2
x = (-1)ⁿ × arcsin √3/2 + πn, n∈Z
x = (-1)ⁿ × arcsin √3/2 + πn, n∈Z
x = (-1)ⁿ × π/3 + πn, n∈Z
5) sin x = 4/5
x = (-1)ⁿ × arcsin 4/5 + πn, n∈Z
x = (-1)ⁿ × 0,927295 + πn, n∈Z
x = (-1)ⁿ × 53,1° + πn, n∈Z
Объяснение:
Подайте в виде произведения выражение.
здесь имеем дело с суммой a³+b³=(a+b)(a²-ab+b²)
и разностью кубов a³-b³ = (a-b)(a²+ab+b²).
***
1) a⁶ - 8= (a²)³ -(2)³ = (a²-2)(a⁴+2a² + 4);
***
2) m¹² +27 = (m⁴)³ + (3)³ = (m⁴+3)(m⁸-3m⁴+9);
***
3) a³-b¹⁵c¹⁸ = (a)³ - (b⁵c⁶)³ = (a-b⁵c⁶)(a²+ab⁵c⁶+b¹⁰c¹²);
***
4) 1-a²¹b⁹ = (1)³ - (a⁷b³)³ = (1-a⁷b³)(1 + a⁷b³ + a¹⁴b⁶);
***
5) 125c³d³+0.008b³ = (5cd)³ + (0.2b)³ = (5cd+0.2b)(25c²d²-bcd+0.04b²);
***
6) 64/729x³ - 27/1000y⁶ = (4/9x)³ - (3/10y²)³ =
= (4/9x- 3/10y²)(16/81x²+2/15xy²+9/100y⁴).
Объяснение:
Подставим вместо "x" 0
y=0-12•0+6
y=6