Объяснение:
а) (х + y)² = х² + 2хy + у² квадрат суммы
б) (5х – 3 )(5х + 3) = 25х² – 9 разность квадратов
в) (х – 2)( х² + 2х + 4) = х³ -8 разность кубов
г) (6х + у)² = 36 х² + 12хy + у² квадрат суммы
д) (х² – у )( х² + у) = х⁴ – y² разность квадратов
е) (х – 5)(х² + 5х + 25) = х³ – 125 разность кубов
3.Задание 2
Известно, что х² + 2хy + y² = 9, найдите:
а) (х + y)² = 9
б) (х + y)² – 5 = 4
в) (2х + 2y)² = 4х²+8ху+4у²=4(х² + 2хy + y²)=36
В примерах 1-5 раскройте скобки:
1. (х + 2у)²=х²+4ху+4у² квадрат суммы
2. (2а - З)²=4а²-12а+9 квадрат разности
3. (Зх - 5у²) (Зх + 5у²)=9х²-25у⁴ разность квадратов
4. (а + 2) (а² - 2а + 4)=а³+8 сумма кубов
5. (х + 1) (х² - х +1)=х³+1 сумма кубов
1)Решение системы уравнений (1; 4);
2)Решение системы уравнений (2; 1);
3)Координаты точки пересечения прямых (3; 2);
Решение системы уравнений (3; 2).
4)20 (руб.) стоит килограмм огурцов.
30 (руб.) стоит килограмм помидоров.
Объяснение:
1. Решить методом подстановки систему уравнений
х+3у=13
2х+у=6
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
х=13-3у
2(13-3у)+у=6
26-6у+у=6
-5у=6-26
-5у= -20
у= -20/-5
у=4
х=13-3у
х=13-3*4
х=1
Решение системы уравнений (1; 4);
2. Решить методом сложения систему уравнений :
2х+3у=7
7х-3у=11
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе ничего преобразовывать не нужно, коэффициенты при у одного значения и с противоположными знаками:
Складываем уравнения:
2х+7х+3у-3у=7+11
9х=18
х=2
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
2х+3у=7
3у=7-2х
3у=7-2*2
3у=3
у=1
Решение системы уравнений (2; 1);
3. Решить графически систему уравнений :
х+у=5
4х-у=10
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
х+у=5 4х-у=10
у=5-х -у=10-4х
у=4х-10
Таблицы:
х -1 0 1 х -1 0 1
у 6 5 4 у -14 -10 -6
Согласно графика, координаты точки пересечения прямых (3; 2);
Решение системы уравнений (3; 2).
4. Задача. За 5 кг огурцов и 4 кг помидоров заплатили 220 р. Сколько стоит килограмм огурцов и сколько стоит килограмм помидоров, если 4 кг огурцов дороже килограмма помидоров на 50 р.?
х - стоит килограмм огурцов.
у - стоит килограмм помидоров.
По условию задачи составляем систему уравнений:
5х+4у=220
4х-у=50
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
-у=50-4х
у=4х-50
5х+4(4х-50)=220
5х+16х-200=220
21х=220+200
21х=420
х=420/21
х=20 (руб.) стоит килограмм огурцов.
у=4х-50
у=4*20-50
у=30 (руб.) стоит килограмм помидоров.
Проверка:
5*20+4*30=220
4*20-30=50, всё верно.