М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
дазз
дазз
03.06.2020 17:36 •  Алгебра

Группу из 30 человек нужно разделить на 4 бригады, причём в первую бригаду должны входить 5 человек,во вторую 8, в третью 10,в четвёртую 7.Сколькими это можно сделать?м

👇
Открыть все ответы
Ответ:
popdaniela820
popdaniela820
03.06.2020

В решении.

Объяснение:

Школьники занимаются прополкой огорода, который находится на пришкольном участке. Работают они с разной скоростью, а некоторые из них, как показывает практика, даже мешают общей работе, просто закапывая сорняки или перебрасывая их на участок соседа...

Вчерашняя работа показала, что Петя и Алина выпалывают гряду за 7 мин, Алина и Серёжа выпалывают её же за 14 мин, Серёжа и Петя — за 28 мин.

За сколько минут выполнят эту работу все вместе?

1 - гряда (условный объём работы).  

1/7 - производительность Пети и Алины (часть гряды в минуту).  

1/14 - производительность Серёжи и Алины (часть гряды в минуту).  

1/28 - производительность Серёжи и Пети (часть гряды в минуту).  

П + А + С + А + С + П = 1/7 + 1/14 + 1/28 = 7/28 = 1/4;  

2(П + А + С) = 1/4  

Сократить (разделить) обе части уравнения на 2:  

(П + А + С) = 1/8 - общая производительность трёх школьников.  

1 : 1/8 = 8 (минут).

4,8(65 оценок)
Ответ:
Angelina000477
Angelina000477
03.06.2020
Решим уравнение xy+z^2=1 относительно z:

z=\pm \sqrt{1-xy},xy \leq 1

для решения в целых числах необходимо, что бы подкоренное выражение было полным квадратом:

\left \{ {{1-xy=k^2,k\in Z} \atop {xy \leq 1}} \right.

используем условие, что x+y=2;y=2-x

\left \{ {{1-x(2-x)=k^2,k\in Z} \atop {x(2-x) \leq 1}} \right.;
\left \{ {{1-2x+x^2=k^2,k\in Z} \atop {2x-x^2 \leq 1}} \right.;
\left \{ {{(x-1)^2=k^2,k\in Z} \atop {0 \leq 1-2x+x^2}} \right.;

\left \{ {{(x-1)^2-k^2=0,k\in Z} \atop {0 \leq (x-1)^2}} \right.;

второе условие системы выполняется всегда

получили: (x-1-k)(x-1+k)=0,k\in Z

x=1+k,or,x=1-k,k\in Z

\left \{ {{x=1+k} \atop {y=2-(1+k)}} \atop {z=\pm k } \right.,or, \left \{ {{x=1-k} \atop {y=2-(1-k)}} \atop {z=\pm k } \right.

\left \{ {{x=1+k} \atop {y=1-k}} \atop {z=\pm k } \right.,or, \left \{ {{x=1-k} \atop {y=1+k)}} \atop {z=\pm k } \right.

ответ: (1+k;1-k;k); (1+k;1-k;-k); (1-k;1+k;k); (1-k;1+k;-k); где k\in Z

Докажем, что \frac{a+b+c}{3} \geq \sqrt[3]{abc};a\ \textgreater \ 0;b\ \textgreater \ 0;c\ \textgreater \ 0

Пусть a=x^3b=y^3c=z^3

тогда наше неравенство равносильно неравенству (его нам тепер нужно доказывать):
x^3+y^3+z^3 \geq 3xyz

x^3+y^3+z^3-3xyz \geq 0

предлагаю разложить на множители уже самому
x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-xz-yz)

x+y+z\ \textgreater \ 0 по условию

докажем, что x^2+y^2+z^2 \geq xy+xz+yz

для это рассмотрим верное неравенство:
(x-y)^2+(x-z)^2+(y-z)^2 \geq 0

x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2 \geq 0

2x^2+2y^2+2z^2-2xy-2xz-2yz \geq 0

x^2+y^2+z^2-xy-xz-yz \geq 0

x^2+y^2+z^2 \geq xy+xz+yz

мы доказали, что \frac{a+b+c}{3} \geq \sqrt[3]{abc};a\ \textgreater \ 0;b\ \textgreater \ 0;c\ \textgreater \ 0

тогда a+b+c \geq 3\sqrt[3]{abc}=3* \sqrt[3]{1}=3

неравенство доказано
4,5(56 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ