3
1
x
2
+x−
3
10
<0 ⇒ x
2
+3x−10<0 ,
D=9+40=49=7
2
, x
1
=−5 , x
2
=2
(x+5)(x−2)<0
znaki: +++(−5)−−−(2)+++
x∈(−5 ;2 )
2) x
2
+10x+25>0 , (x+5)
2
>0 → x+5
=0 , x
=−5
x∈(−∞;−5 )∪(−5 ;+∞)
3) 3x
2
−24x+48<0 , x
2
−8x+16<0 , (x−4)
2
<0 ,
x∈∅
\begin{gathered}4)\ \ x^2+\dfrac{2}{3}\, x+\dfrac{4}{3} > 0\ \ \ ,\ \ \ 3x^2+2x+4 > 0\ \ ,D/4=1-12=-11 < 0\ \ \Rightarrow \ \ \ x\in \varnothing 5)\ \ -4x^2+5x-2 > 0\ \ \ ,\ \ \ 4x^2-5x+2 < 0\ \ ,\ \ D=25-32=-7 < 0\ ,x\in \varnothing\end{gathered}
4) x
2
+
3
2
x+
3
4
>0 , 3x
2
+2x+4>0 ,
D/4=1−12=−11<0 ⇒ x∈∅
5) −4x
2
+5x−2>0 , 4x
2
−5x+2<0 , D=25−32=−7<0 ,
x∈∅
Объяснение При пересечении параллельных прямых секущей образуется 8 углов двух величин:
соответственные углы
∠1 = ∠5
∠3 = ∠7,
а так как ∠1 = ∠3 как вертикальные, то
∠1 = ∠5 = ∠3 = ∠7 = х
и соответственные углы
∠2 = ∠6
∠4 = ∠8,
а так как ∠2 = ∠4, как вертикальные, то
∠2 = ∠6 = ∠4 = ∠8 = у
Сумма односторонних углов равна 180°, например
∠3 + ∠6 = 180°
Т. е. х + у = 180°.
Углы, о которых идет речь в задаче, не равны, значит их сумма 180°:
х - меньший угол, у = 5х
x + 5x = 180°
6x = 180°
x = 30°
∠1 = ∠5 = ∠3 = ∠7 = 30°
у = 180° - 30° = 150°
∠2 = ∠6 = ∠4 = ∠8= 150°
Объяснение:
360°:30° = 12
2πR = 2*3,14*6 = 37,68 (см) - длина окружности с радиусом 6 см
37,68 : 12 = 3,14 (см) - длина дуги
πR² = 3,14 * 6² = 113,04 (см²) - площадь круга с радиусом 6 см
113,04 : 12 = 9,42 (см²) - площадь сектора