1,75
Объяснение:
S = x1(1-x2) + x2(1-x3) + x3(1-x4) + x4(1-x5) + x5(1-x6) + x6(1-x7) + x7(1-x1)
При условии: x1; x2; x3; x4; x5; x6; x7 ∈ [0; 1]
Очевидно, что при x1 = x2 = x3 = x4 = x5 = x6 = x7 = 0 будет S = 0
Точно также, при x1 = x2 = x3 = x4 = x5 = x6 = x7 = 1 будет S = 0
Так как выражение симметрично относительно переменных, то любую переменную можно заменить на любую другую.
Это значит, что максимум будет достигнут при равных значениях всех переменных.
Сумма будет максимальной при x1 = x2 = x3 = x4 = x5 = x6 = x7 = 0,5
S = 0,5*0,5 + 0,5*0,5 + 0,5*0,5 + 0,5*0,5 + 0,5*0,5 + 0,5*0,5 + 0,5*0,5 =
= 0,25*7 = 1,75
1) Обозначим через х количество книг на 1 полке, а через у - количество книг на 2 полке.
2) Так как на 2 полках первоначально было 70 книг, то можем составить первое уравнение: х + у = 70
3) Когда с 1 полки забрали 25% книг, то на ней осталось (100 - 25) = 75% книг от первоначального или 0,75х и в тоже время на 14 книг больше чем на второй полке, на основании этого можно составить второе уравнение: 0,75х = у + 14.
4) Таким образом получаем 2 уравнения с двумя неизвестными. Из первого уравнения выражаем у через х, получаем: у = 70 - х и подставляем во второе уравнение:
0,75х = 70 - х + 14
1,75х = 84
х = 48
у = 70 - х = 70 - 48 = 22
ответ: На 1 полке было 48 книг, на второй - 22 книги.
ответ 2) -5
Объяснение на листочке