y=x^4-8x^3+10x^2+1 1) Находим производную функции y'=(x^4-8x³+10x²+1)'=4x³-24x²+20x 2)Находим точки, в которых производная равна нулю: 4x³-24x²+20x=0 4x(x²-6x+5)=0 4x(x-1)(x-5)=0 x₁=0 x₂=1 x₃=5 Из полученных значений нам надо оставить лишь те, которые принадлежат заданному промежутку.
1) ОТРЕЗОК [-2;3] 0∈[-2;3] и 1∈[-2;3], a 5∉[-2;3] Значит находим значения функции в полученных стационарных точках из промежутка и на концах промежутка: у(0)=0^4-8*0³+10*0²+1=1 у(1)=1^4-8*1³+10*1²+1=1-8+10+1=4 у(-2)=(-2)^4-8(-2)³+10(-2)²+1=4+64+40+1=109 наибольшее значение у(3)=3^4-8*3³+10*3²+1=81-216+90+1=-44 наименьшее значение ответ: у наим = -44; у наиб=109
2) ОТРЕЗОК [-1;7] 0∈[-1;7],1∈[-1;7], 5∈[-1;7] у(0)=0^4-8*0³+10*0²+1=1 у(1)=1^4-8*1³+10*1²+1=1-8+10+1=4 у(5)=5^4-8*5³+10*5²+1=625-1000+250+1=-124 наименьшее значение y(-1)= (-1)^4-8*(-1)³+10*(-1)²+1=1+8+10+1=20 наибольшее значение
3/7
Объяснение:
x - числитель.
Начальная дробь: x/(x+4), где x - натуральное число.
Система неравенств:
(x+6)/(x+4+4)<(2x)/(x+4); (x+6)/(x+8)<(2x)/(x+4)
(x+8)/(x+4+1)>(3x)/(x+4); (x+8)/(x+5)>(3x)/(x+4)
(x+6)(x+4)<2x(x+8)
x²+4x+6x+24<2x²+16x
2x²+16x-x²-10x-24>0
x²+6x-24>0
Допустим: x²+6x-24=0; D=36+96=132
x₁=(-6-2√33)/2=-3-√33 - этот корень не подходит для уравнения, так как x -
натуральное число.
x₂=(-6+2√33)/2=√33 -3 - этот корень также не подходит для уравнения, так как x -
натуральное число.
При 0≤x<√33 -3: (2+6)/(2+8)<(2·2)/(2+4); 24/30>20/30 - неравенство не
выполняется.
При x>√33 -3: (3+6)/(3+8)<(2·3)/(3+4); 21/28<24/28 - неравенство выполняется.
Следовательно, для данного 1-го неравенства x∈[3; +∞).
(x+8)(x+4)>(3x)(x+5)
x²+4x+8x+32>3x²+15x
3x²+15x-x²-12x-32<0
2x²+3x-32<0
Допустим: 2x²+3x-32=0; D=9+256=265
x₁=(-3-√265)/4 - этот корень не подходит для уравнения, так как x - натуральное
число.
x₂=(√265 -3)/4 - этот корень также не подходит для уравнения, так как x -
натуральное число.
При x>(√256 -3)/4: (4+8)/(4+5)>(3·4)/(4+4); 8/6<9/6 - неравенство не выполняется.
Отсюда следует, что x=3 - это числитель.
Знаменатель: 3+4=7.
Дробь: 3/7.