y=x^2-3x+2
1) Находим точки пересечения графика функции с осью Ох:
х^2-3x+2=0
x1=1, x2=2
(1;0) и (2;0) - искомые точки
2) Находим уравнение касательной к графику функции в точке х=1
y`(x)=(x^2-3x+2)`=2x-3
y`(1)=2*1-3=-1 k1=-1
y(1)=1^2-3*1+2=1-3+2=0
y=0+(-1)(x-1)=-x+1 -уравнение касательной в точке х=1
3) Находим уравнение касательной к графику функции в точке х=2
y`(2)=2*2-3=4-3=1 k2=1
y(2)=2^2-3*2+2=4-6+2=0
y=0+1(x-2)=x-2 -уравнение касательной в точке х=2
4) Коэффициент угла наклона первой касательной k1=-1, а второй касательной k2=1,
следовательно, касательные взаимно перпендикулярны,
т.е.угол между ними равен 90 градусов.
Для начала найдём, сколько слабо успевающих учеников.
1) 25-(10+3) = 12 - слабо успевающие
Наше событие(А) - это "не ниже 4", значит, оценка 4 или 5
Обозначим вероятности (P) того, что вызванный ученик окажется или отличником(У1), или ударником(У2), или слабо успевающим(У3).
P(У1) =
Р(У2) =
Р(У3) =
Вероятность того, что У1 ответит на оценку, не ниже 4 = 100%
Вероятность того, что У2 ответит на оценку, не ниже 4 = 100%, так как на экзамене он с равной долей вероятности получит или 4, или 5
Найдём Вероятность того, что У3 ответит на экзамене не ниже 4. С равной долей вероятности он может получить 3(О1) или 4(О2) или 5(О3). Вероятность получить одну из данных отметок равна 1/3.
P(O1)=P(O2)=P(O3)=
Благоприятному исходу соответствуют 2 случая: 4 или 5. Значит, вероятность получения одной из двух этих отметок равна
P(O2+O3)=P(O2)+P(O3)=
Вероятность события (А) =
P(A)=P(У1)*1+Р(У2)*1+P(У3)*P(O2+O3)=
+
+
*
=
0,12+0,4+0,32= 0,48
ответ: 0,48