Можно и без применения производной : f²(x) = (√(16 - x ) +√(x-14) )² =2+2√( (16 - x ) *(x-14) ) ≤ 2+(16 - x +x-14)=4 , равенство имеет место ,если 16 - x =x-14, т.е. при x=15. Затем из f²(x) ≤ 4 ⇒ f(x) ≤ 2 . || f(x) >0 ||
2-ой Это не мое решение ( более искусственный, использован частный случай неравенства Коши) * * * √ab ≤(a+b) /2 при a≥0 ,b ≥ 0 * * * ОДЗ :x∈[14;16] Оценим обе части равенства √(16-x ) =√(16-x )*1 ≤ (17-x)/2 (3) ; равенство, если 16 -x=1 ⇒x=15. √(x-14)= √(x-14)*1 ≤ (x-13)/2 (4) ; равенство, если x-14=1 ⇒x=15. Из (3) и (4) получаем √(16-x)+√(x-14) ≤ 2 * * * (17-x)/2 +(x-14)/2 =2 * * *
правая часть равенства x²-30x +227 =(x-15)² +2 ≥ 2 равенство опять , если x=15. 2 ≥ √(16-x ) +√(x-14) = x²-30x +227 ≥ 2 равенство имеет место только при x=15.
Докажем, сначала, что куб числа - монотонная функция. Монотонная функция -функций, у которой одному значению переменной соответствует только одно значение функции. Пойдем методом от противного пусть в точках х и х+с функция принимает одно и то же значение, тогда: x^3=(x+c)^3 x^3=x^3+3x^2c+3xc^2+c^3 3c *x^2+ 3c^2 *x +c^3=0|:c не равное 0 3x^2+3cx+c^2=0 D=9c^2-4*3c^2=-3c^2<0 Значит не существует такого с, что функция в при нескольких икс принимает одно и то же значение, а значит она монотонна. Если функция монотонна, то достаточно доказать, что если функция f(х+1) больше функции f(x) -то функция явл возрастающей. Пусть: (x+1)^3>x^3 x^3+3x^2+3x+1>x^3 3x^2+3x+1>0 D=9-12=-3<0 Значит уравнение корней не имеет, у параболы ветви вверх, значит она всюду больше 0 Отсюда следует, что: (x+1)^3>x^3 f(x+1)>f(x) Значит функция является монотонно возрастающей.
На месте x=2 ВЫКОЛОТАЯ точка...
x y
-4 2
-2 4
-1 8
1 -8
4 -2