1. Выполним сложение дробей (3y + 9)/(3y - 1) и (2y - 13)/(2y + 5) и из полученного уравнения найдем значение переменной у, при условии, что сумма дробей равна 2:
(3y + 9)/(3y - 1) + (2y - 13)/(2y + 5) = 2;
Приведем к общему знаменателю (3y - 1)(2y + 5):
(3y + 9)/(3y - 1) * (3y - 1)(2y + 5)/(3y - 1)(2y + 5) + (2y - 13)/(2y + 5) * (3y - 1)(2y + 5)/(3y - 1)(2y + 5) - 2 * (3y - 1)(2y + 5)/(3y - 1)(2y + 5) = 0;
Дробь равна нулю, если числитель равен нулю:
(3y + 9)(2y + 5)+ (2y - 13)(3y - 1) - 2 * (3y - 1)(2y + 5) = 0;
6y² + 15y + 18y + 45 + 6y² - 2y - 39y + 13 - 2(6y² + 15y - 2y - 5) = 0;
6y² + 15y + 18y + 45 + 6y² - 2y - 39y + 13 - 12y² - 30y + 4y + 10 = 0;
- 34y + 68 = 0;
- 34y = - 68;
y = 2.
Объяснение:
сумма дробей равна 2,если у=2
Т.е. всего различных вариантов 6*6 = 36.
Варианты (исходы эксперимента) будут такие:
1;1 1;2 1;3 1;4 1;5 1;6
2;1 2;2 2;3 2;4 2;5 2;6
и т.д.
6;1 6;2 6;3 6;4 6;5 6;6
Подсчитаем количество исходов (вариантов), в которых сумма очков двух кубиков равна 8.
2;6 3;5; 4;4 5;3 6;2 Всего 5 вариантов.
Найдем вероятность. 5/36 = 0,138 ≈ 0,14
2) Возможен такой вариант решения.
Какие возможны исходы двух бросаний монеты?
1) Решка, решка.
2) Решка, орел.
3) Орел, решка.
4) Орел, орел.
Это все возможные события, других нет. Нас интересует вероятность 2-го или 3-го события.
Всего возможных исходов 4.
Благоприятных иcходов – 2.
Отношение 2/4 = 0,5.
1) благоприятных вариантов 4 (1,2,3,4), а всего вариантов 6 ( 1, 2,3,4,5,6).
вероятность равна 4:6 = 2/3