Дано: 10 различных цифр: 1 2 3 4 5 6 7 8 9 0
Составить число кратное 11.
Признак делимости на 11: сумма цифр числа, стоящих на четных местах, равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11.
Сумма всех 10-и цифр: 1+2+3+4+5+6+7+8+9+0=45, 45/2=22(ост.1), поэтому, поскольку в искомом числе должно быть равное количество четных и не четных мест, суммацифр на четных местах не может быть равна сумме цифр на нечетных.
Тогда нужно проверить 2-ю часть признака делимости:
45-11=34
34/2=17
45-17=28
28-17=11, значит сумма чисел, стоящтх на нечетных местах( 1; 3; 5; 7; 9) должна быть = 17, а на четных местах (2; 4; 6; 8; 10) = 28.
Теперь нужно разложить 17 и 28, каждое, на 5 слагаемых:
17=1+2+3+4+7
28=5+6+8+9+0
ответ: Данное разложение возможно, значит такое число существует.
Искомое число: 1526384970.
В задании сказано, составить число, поэтому найдено 1 число, на самом деле, таких чисел 5!+5!=2*5!=2(5*4*3*2*1)=240, потому, что при перестановке мест слагаемых сумма не меняется, поэтому сумма чисел, стоящих на нечетных местах, может быть в 120 вариантах 5*4*3*2*1=120, и сумма чисел, стоящих на четных местах может быть тоже в 120 вариантах (включая 0, потому, что 0 стоит на четном месте, поэтому никогда не встанет на 1 место, что могло бы изменить число с 10-и значного на 9-и значное)
Проверка с калькулятора:
1526384970/11=38762270
1.Область определения функции:
x>0 т.е. .
2.Область значения функции:
Функция существует при любых y.
3.Чётность – нечётность:
y(x)= 1-ln3x, y(-x)= 1-ln3(-x) – функция общего вида.
4.Периодичность:
функция не периодическая.
5.Асимптоты:
для отыскания вертикальных асимптот, нужно найти те значения x, при которых функция обращается в бесконечность (lim y(x) à∞).
Вертикальная x=0, так как limx→0+y(x)=∞
Наклонные асимптоты
Уравнение наклонной асимптоты: у=kх+b, где k=lim x→∞(y(x)/x)=0,
b= limx→∞(y(x)-kx)= -∞ - наклонных асимптот нет.
6.Точки пересечения графика с осями координат:
1-ln3x=0, ln3x=0, x=e, точка пересечения с осью Ox (e,0)
7.Участки монотонности (возрастания, убывания):
y’= -3ln2x/x, x>0
Функция убывает от (0, ∞), от (-∞,0] функция не определена.
8.Точки перегиба, выпуклости, вогнутости функции:
Если y’’(х)>0, то кривая вогнутая на интервале, если y’’(х)<0 – выпуклая
y’’= (3ln2x/x2)-(6lnx/x2)
0 + 1 - e2 +
Функция не определена (-∞,0], функция на промежутке от (0,1] - вогнутая, на промежутке от (1, e2] – выпуклая, на промежутке от (e2, ∞) – вогнутая.
9.Строим график.