М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
novakelizaveta7
novakelizaveta7
01.02.2021 05:21 •  Алгебра

Найдите остаток от деления

👇
Ответ:
Neznayka133
Neznayka133
01.02.2021

ты не написал от чего, но если что остаток от деления это то число которое надо вычесть из делимого, чтобы оно  полностью поделилось на делитель

Объяснение:

4,4(58 оценок)
Открыть все ответы
Ответ:
denisstar756
denisstar756
01.02.2021
Физический процесс протекает во времени, поэтому все физические формулы, описывающие явления материального мира во времени являются функциями, описывающими реальные физические процессы. В такие уравнения время входит в качестве переменного параметра, а не константы (как, например, в формуле для периода), либо входит опосредованно в другие величины, такие, например, как скорость, электрический ток и т.п. Некоторые уравнения описывают процессы и одновременно состояния, а поэтому не содержат непосредственно в себе параметра времени, а лишь показывают некоторые частные состояния системы, как, например уравнение Менделеева-Клайперона (уравнение идеального газа).

Уравнение равномерного движения – это функция, описывающая реальный физический процесс равномерного движения:

S = vt ;

Уравнение равномерного прямолинейного движения – это функция, описывающая реальный физический процесс прямолинейного движения в векторном виде:

\overline{r} = \overline{v}t ;

Следствие для скорости из уравнения определения ускорения – это функция, описывающая реальный физический процесс равномерного изменения скорости:

v = v_o + at , либо в векторном виде: \overline{v} = \overline{v_o} + \overline{a} t ;

Уравнение равнопеременного движения – это функция, описывающая реальный физический процесс равнопеременного движения:

S = v_o t + \frac{at^2}{2} либо в векторном виде: \overline{r} = \overline{v_o} t + \frac{ \overline{a} t^2}{2} ;

Второй Закон Ньютона – это функция, описывающая реальный физический процесс динамики движения:

a = \frac{F_\Sigma}{m} либо в векторном виде: \overline{a} = \frac{ \overline{F}_\Sigma }{m} ;

Уравнение равномерного движения по окружности – это функция, описывающая реальный физический процесс равномерного движения по окружности:

\Delta \varphi = \omega t ;

Уравнение движения при гармонических колебаниях – это функция, описывающая реальный физический процесс гармонического колебания:

\Delta x = A \cos{ ( \omega t + \varphi_o ) } ;

Следствие для скорости из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения скорости в гармоническом колебании:

v = - A \omega \cos{ ( \omega t + \varphi_o ) } ;

Следствие для ускорения из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения ускорения в гармоническом колебании:

a = - A \omega^2 \cos{ ( \omega t + \varphi_o ) } ;

Следствие для энергии из уравнения определения теплоёмкости – это функция, описывающая реальный физический процесс нагревания:

Q^o = C \Delta t , где C = cm , либо в удельном виде: Q^o = c m \Delta t ;

Следствие для энергии из уравнения определения теплоты плавления и кристаллизации – это функция, описывающая реальный физический процесс плавления и кристаллизации:

Q^o = \lambda m ;

Следствие для энергии из уравнения определения теплоты парообразования и конденсации – это функция, описывающая реальный физический процесс парообразования и конденсации:

Q^o = L m ;

Следствие для энергии из уравнения определения теплоты горения – это функция, описывающая реальный физический процесс горения:

Q^o = q m ;

Уравнение идеального газа – это многопараметрическая функция, описывающая все физические процессы газов низких давлений:

PV = \frac{m}{ \mu } RT ;

Уравнения определения тока – это функция, описывающая реальный физический процесс движени заряженных частиц:

I = \frac{ \Delta q }{ \Delta t } ;

Закон Фарадея – это многопараметрическая функция, описывающая гальванический процесс:

m F_\Phi z = I \Delta t , где F_\Phi = N_A e ;

Закон Ома – это функция, описывающая реальный физический процесс движения заряженных частиц в однородном проводнике:

I = \frac{U}{R} ;

Закон Джоуля-Ленца – это функция, описывающая реальный физический процесс превращения энергии в электрических цепях:

Q^o = UQ = UI \Delta t = I^2 R \Delta t = \frac{ U^2 }{R} \Delta t ,

либо в мощностном виде: P = UI = I^2 R = \frac{ U^2 }{R} ;

Закон Ампера (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на проводник с током:

F_A = B I \Delta L \sin{ \varphi } ;

Закон Лоренца (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на движущуюся частицу:

F_\Lambda = B v q \sin{ \varphi } ;

Закон Фарадея-Ленца электромагнитной Индукции (Третий Закон Максвелла) – это функция, описывающая реальный физический процесс порождения вихревого электрического поля при изменении магнитного поля:

U_{ind} = -\Phi'_t .
4,8(18 оценок)
Ответ:
mariana2411
mariana2411
01.02.2021

Коротко: Наша цель найти k и b, чтобы подставить их в уравнение прямой y = kx + b.

Подробное решение:

Рассмотрим 1ую функцию:

Возьмем произвольную точку; пусть это будет точка A(0; 0). Мы видим по графику, что это прямая. Уравнение прямой: y = kx + b (в некоторых учебниках пишут y = kx + m разницы нет вообще (только буква другая) ).

Мы смотрим, какой x у точки A (т.е. на 1ое число после скобки A(x; y) ). Видим, что x = 0. Аналогично и y = 0. Подставим эти значения в формулу. Вместо y (в формуле y = kx + b) идет 0; вместо x тоже 0, но его мы уже подставляем суда: y = kx + b. Получим: 0 = 0 + b. Это простейшее линейное уравнение. Хорошо видно, что b = 0.

Отлично, b нашли. Теперь найдем k. Возьмем любую другую точку, где x не равен 0. Пусть это будет точка B(2; 1). Помнишь как найти x и y этой точки? Правильно: x = 2, y = 1 (т.к. B(x; y)  ). Подставим их в уравнение прямой y = kx + b (мы не забываем про b, его мы уже знаем). Получили: 1 = k * 2 + 0. Простое линейное уравнение. Решив его, увидим, что k = 0.5.

Теперь подставим k и b в наше уравнение прямой. Результатом всех наших действий стала формула уравнения прямой 1ой функции. ответ на 1ую задачу: y = 0.5x

Рассмотрим 2ую функцию:

Я бы сказал, она самая простая. Y здесь фиксированный и не меняется при изменении x! Поэтому в таких случаях мы просто пишем y = 2. Эта функция всегда дает нам значение 2. Применять алгоритм из 1ого примера ни в коем случае не нужно.

Рассмотрим 3ью функцию:

Применим алгоритм из 1ого примера. Возьмем точку A(0; 3). 3 = 0 + b => b = 3. Возьмем точку B(2; 0). 0 = 2 * k + 3 => k = -1.5. Все просто! ответ: y = -1.5k + 3

4,6(35 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ