М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Daniljj1
Daniljj1
14.07.2021 11:24 •  Алгебра

Разложите выражение (1+√5)^4 по формуле бинома Ньютона, и упростить его

👇
Ответ:
galaxykill
galaxykill
14.07.2021
Добрый день!

Для решения данной задачи воспользуемся формулой бинома Ньютона. Формула бинома Ньютона гласит, что для выражения (a + b)^n справедливо следующее разложение:

(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-2) * b^2 + ... + C(n,n-1) * a * b^(n-1) + C(n,n) * a^0 * b^n,

где C(n, k) - это число сочетаний из n по k, которое можно вычислить по формуле: C(n, k) = n! / (k! * (n-k)!), где n! означает факториал числа n.

Используя данную формулу, разложим выражение (1 + √5)^4:

n = 4, a = 1, b = √5.

Сначала вычислим значения C(n,k) для всех k от 0 до n:

C(4,0) = 4! / (0! * (4-0)!) = 1,
C(4,1) = 4! / (1! * (4-1)!) = 4,
C(4,2) = 4! / (2! * (4-2)!) = 6,
C(4,3) = 4! / (3! * (4-3)!) = 4,
C(4,4) = 4! / (4! * (4-4)!) = 1.

Теперь применим формулу:

(1 + √5)^4 = C(4,0)*1^4*√5^0 + C(4,1)*1^3*√5^1 + C(4,2)*1^2*√5^2 + C(4,3)*1^1*√5^3 + C(4,4)*1^0*√5^4.

Упростим:

(1 + √5)^4 = 1*1*1 + 4*1*√5 + 6*1*5 + 4*1*√5^3 + 1*1*5^2.

Таким образом, разложение выражения (1 + √5)^4 по формуле бинома Ньютона приводит к следующему результату:

(1 + √5)^4 = 1 + 4√5 + 30 + 20√5 + 25.

Получили, что (1 + √5)^4 = 56 + 24√5.

Надеюсь, это разложение понятно для вас! Если у вас есть еще вопросы или нужна дополнительная информация, пожалуйста, сообщите.
4,5(37 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ