x^2 - 3x + 2 = (x - 1)(x - 2) < 0
Решением этого неравенства является промежуток (1, 2)
Разложим на множители левую часть второго неравенства:
ax^2 - (3a + 1)x + 3 = (ax^2 - x) - (3ax - 3) = x(ax - 1) - 3(ax - 1) = (x - 3)(ax - 1) = a(x - 3)(x - 1/a)
Возможны 5 вариантов.
1) a > 1/3. Тогда решение неравенства – промежуток (1/a, 3). Нужно, чтобы промежуток (1, 2) полностью содержался в нём, так будет, если 1/a < 1. Объединяем с условием a > 1/3 и получаем часть ответа: a > 1.
2) a = 1/3. У второго неравенства нет решений.
3) 0 < a < 1/3. Решение неравенства – промежуток (3, 1/a); такой промежуток никогда не содержит (1, 2).
4) a = 0. Второе неравенство превращается в 3 - x < 0, x > 3. Не подходит.
5) a < 0. Решение второго неравенства – промежуток (1/a, 3), при этом 1/a < 0. Подходит.
ответ.
х=1 или x=1-i*sqrt(2) или x=1+i*sqrt(2)
Объяснение:
1/х=у
y^3+y^2+y-3=0
(y-1)*(y^2+2y+3)=0
Один корень у=1
Остальные корни уравнения y^2+2y+3=0
y^2+2y+3=(у+1)^2+2>0
Нет действительных решений
комплексные:
у=-1+i*sqrt(2) y=-1-i*sqrt(2)
Значит x=1 или x=1/(-1+i*sqrt(2))=1-i*sqrt(2) /получается домножением знаменателя на сопряженное число)
или x=1+i*sqrt(2) /также/