Угол 30°
Катет 7 см
Объяснение:
Величина второго острого угла (вспомнив, что сумма величин углов треугольника равна 180°) :
180°-90°-60°=30°
В треугольниках против меньших углов лежат меньшие стороны (и наоборот), следовательно меньший катет лежит против угла 30°. А катет, лежащий против угла 30° равен половине гипотенузы (а - катет, с - гипотенуза, α - угол противолежащий катету. а=с*sinα; при α=30° sinα=sin30°=1/2; a=c*1/2 - катет равен половине гипотенузы). По условию сумма гипотенузы и половины гипотенузы равна 21 см. Следовательно короткий катет равен 1/3 суммы:
21/3=7 (см)!
Объяснение:
x≠0, y≠0
(x²-y²)/xy= 3/2
x²-y²=12
12/xy=3/2
3xy=24
xy=8
x=8/y
8/y²-y²/8=3/2
пусть 8/y²=t, t>0 тогда:
t-1/t=3/2, t≠0
2t²-3t-2=0
D= 9+16= 25
t1= (3-5)/4= -1/2 - не корень
t2= (3+5)/4= 2
8/y²=2
y²=4
y1= -2
y2= 2
x1= -4
x2= 4
Наименьшее из найденных значений x это -4