1)(х^2 +ху-у^2) (х+у) =
=Х^3+х^2 у+х^2 у+xy^2 -ху^2 -у^3=
Сокращаем +ху^2 и - ху^2
=х^3+2х^2у-у^3
2)(n^2 - np-p^2) (n-p) =
=n^3-n^2 p-n^2 p+np^2+np^2 - p^3=
=n^3-2n^2 p-2np^2 - p^3
3)(a-x)(a^2 - ax-x^3)=
=a^3-a^2 x-ax^3-a^2 x+ax^2 +x^4=
=a^3-2a^2 x-ax^3+ax^2 +x^4
4)(b-c)(b^2 - bc-c^2) =
=b^3-b^2 c-bc^2 - b^2 c+bc^2 +c^3=
сокращаем - bc^2 и +bc^2
=b^3-2b^2 c+c^3
Объяснение:
этот ^означает степень
\left \{ {{(2x+3)^{2} =-7y} \atop {(2x+5)=-7y}} \right.
Выразим y:
(2x+3)^{2} = -7y
4x^{2}+12x+9 = -7y
y = \frac{4x^{2}+12x+9}{-7}
Решим систему:
\left \{ {{(2x+3)^{2} =-7y} \atop {(2x+5)=-7y}} \right.
\left \{ {{(2x+3)^{2} =-7y | } \atop {(2x+5)=-7y | *(-1)}} \right.
\left \{ {{(2x+3)^{2} =-7y} \atop {-(2x+5)=7y}} \right.
Суммируем:
(2x+3)^{2} -(3x+5)^{2} = 0
Раскроем скобки:
(4x^{2} +12x+9) -(9x^{2}+30x+25) = 0
4x^{2} +12x+9 -9x^{2}-30x-25
-5x^{2}-18x-16 = 0 (*-1)
5x^{2}+18x+16 = 0
D = 4
\sqrt{D} = 2
x_{1} = -2 x_{-1.6}
Найдем y подставив в формулу: y = \frac{4x^{2}+12x+9}{-7}
y_{1} = \frac{4(-2)^{2}+12(-2)+9}{-7} = -\frac{1}{7}
y_{2} = \frac{4(-1.6)^{2}+12(-1.6)+9}{-7} = -\frac{1}{175}
ответ: (-2; -\frac{1}{7}); (-1.6; -\frac{1}{175}).
10,4 или 13 га в день
Объяснение:
Пусть x - Обрабатываемая площадь посевов в день (ед. измерения - га/день), тогда по норме он должен выполнить заказ ровно за 52/x дней, но известно, что на предыдущий день (т.е на ), он обработал от 48 до 54,6 га, со скоростью, превышающей норму на 3 (т.е скорость равна x+3) итого получаем
поработаем сначала с выражением слева:
52/x - 1 = (52-x)/x, т.е. в Левых частях получается выражение (52-x)(x+3)/x
Раскроем скобки: (-x^2 + 49x + 156)/x
так как x > 0 (Действительно, механизатор не может обрабатывать в отрицательную площадь земли), то можем домножить на x (Обращу внимание, что домножать на x можно ТОЛЬКО если известно, что он только одного знака (в силу одз или условий задачи), причем если x всегда < 0, то нужно еще и поменять знак неравенства):
Решим неравенства по отдельности:
1) -x^2 + x + 156 >= 0 2) -x^2-5,6 + 156 <= 0 |*5
D = 1 + 624 = 625 (25*25) -5x^2-28x+780 <= 0
x1 = (-1 - 25)/-2 = 13 D =784 + 15600=16384 (128*128)
x2 = (-1+25)/-2 = -12 x1 = (28-128)/-10 = 10
Далее используя метод x2 = (28+128)/-10 = -15,6
интервалов или свойства Далее используя метод
параболы получаем: интервалов или св-ва параболы:
-12 <= x <= 13 x <= -15,6 или x >= 10
x > 0, следовательно x > 0 следовательно
x <= 13 x >= 10
Нужно было сделать заказ за целое число дней, это означает что 52/x - целое число. Максимально возможное значение 52/x при x=10 52/10=5,2, Минимальное при x=13, 52/13 = 4 т.е. заказ выполнен при норме за 4 или 5 дней, если за 4, то скорость при норме 52/4 = 13 га в день, если за 5 дней, то 52/5 = 10,4 га в день
Объяснение:
x³ + x²y - xy² + x²y + xy² - y³ = x³ + 2x²y - y³
n³ - n²p +np²- n²p + np² - p³ = n³ - 2n²p + 2np² - p³
a³ - a²x - ax² + a²x - ax² - x³ = a³ - 2ax² - x³
b³ - b²c -bc² - b²c + bc² + c³ = b³ - 2b²c + c³