М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
npletnikova
npletnikova
19.03.2020 05:04 •  Алгебра

РАЗОБРАТЬСЯ

ответ: (-3; -1-√3) U (1; 5)​


log_{x { }^{2} + 2x - 2}( \frac{ |x + 4| - |x| }{ x - 1} ) 0

👇
Ответ:
sarmat1482
sarmat1482
19.03.2020

ОДЗ:

\left \{ {{x^2+2x-20} \atop{ {x^2+2x-2\neq1 }\atop{\frac{|x+4|-|x|}{x-1}0 }} \right.

Решаем каждое неравенство:

x^2+2x-20    ⇒   (x+1)^2-3 0   ⇒(x+1-\sqrt{3})(x+1+\sqrt{3})0

x\in (-\infty;-1-\sqrt{3}) \cup{-1+\sqrt{3};+\infty)

x^2+2x-2\neq 1    ⇒     x^2+2x-3\neq 0  ⇒     x\neq -3;  x\neq 1

\frac{|x+4|-|x|}{x-1}0  

Подмодульные выражения обращаются в 0 в точках

x=-4    и  x=0

Это точки делят числовую прямую на три промежутка.

Раскрываем знак модуля на промежутках:

(-∞;-4]

|x+4|=-x-4

|x|=-x

\frac{-x-4-(-x)}{x-1}0     ⇒     \frac{-4}{x-1}0    ⇒    x < 1

решение неравенства (-∞;-4]

(-4;0]

|x+4|=x+4

|x|=-x

\frac{x+4-(-x)}{x-1}0     ⇒     \frac{2x+4}{x-1}0    ⇒    x < -2 или  x > 1

решение неравенства (-4;-2)

(0;+∞)

|x+4|=x+4

|x|=x

\frac{x+4-x}{x-1}0     ⇒     \frac{4}{x-1}0    ⇒    x > 1

решение неравенства (1;+∞]

Объединяем  ответы трех случаев:

\frac{|x+4|-|x|}{x-1}0    при   x \in (-\infty;-2)\cup(1;+\infty)

ОДЗ:

\left \{ {{x\in (-\infty;-1-\sqrt{3}) \cup{-1+\sqrt{3};+\infty)} \atop{ {x\neq-3; x\neq 1 }\atop{ x \in (-\infty;-2)\cup(1;+\infty)}} \right.

x\in (-\infty;-3)\cup(-3;1-\sqrt{3}) \cup(1;+\infty)

Решаем неравенство:  log_{x^2+2x-2}\frac{|x+4|-|x|}{x-1}0

0=log_{x^2+2x-1}1

log_{x^2+2x-2}\frac{|x+4|-|x|}{x-1}log_{x^2+2x-2}1

Два случая:

если основание логарифмической функции >1, то она возрастает и большему значению функции соответствует большее значение аргумента

\left \{ {{x^2+2x-21} \atop {\frac{|x+4|-|x|}{x-1}1}} \right.     ⇒     \left \{ {{x^2+2x-30} \atop {\frac{|x+4|-|x|-x+1}{x-1}0}} \right.     ⇒           \left \{ {{x\in (-\infty;-3) \cup(1;+\infty)} \atop {x\in(-\infty;-4]\cup(1;5)}} \right.

второе неравенство решаем на промежутках  так:

(-∞;-4]

\frac{-x-4-(-x)-x+1}{x-1}0    ⇒    \frac{-3-x}{x-1}0   ⇒    \frac{x+3}{x-1}  ⇒ (-3;-1)

не принадлежат (-∞;-4]

на (-4;0]

\frac{x+4-(-x)-x+1}{x-1}0      ⇒      \frac{x+5}{x-1}0    ⇒    x < -5   или  x > 1

не принадлежат (-4;0]

(0;+∞)

\frac{x+4-x-x+1}{x-1}0      ⇒    \frac{5-x}{x-1}0    ⇒   \frac{x-5}{x-1}    ⇒x\in (1;5)

о т в е т  этого случая (1;5)

если основание логарифмической функции 0 < a < 1, то она убывает и большему значению функции соответствует меньшее значение аргумента

\left \{ {{0     ⇒     \left \{ {0      ⇒   \left \{ {{x\in (-3;-1-\sqrt{3}) \cup(-1+\sqrt{3};1)} \atop {x\in(-\infty;-4]\cup(-4;0]\cup(5;+\infty)}} \right.

второе неравенство решаем на промежутках так:

(-∞;-4]

\frac{-x-4-(-x)-x+1}{x-1}    ⇒    \frac{-3-x}{x-1}   ⇒    \frac{x+3}{x-1}0  ⇒

(-∞;-3)U(1;+∞)

о т в е т. (-∞;-4]

на (-4;0]

\frac{x+4-(-x)-x+1}{x-1}      ⇒      \frac{x+5}{x-1}    ⇒     -5 < x < 1

о т в е т.  (-4;0]

(0;+∞)

\frac{x+4-x-x+1}{x-1}      ⇒    \frac{5-x}{x-1}    ⇒   \frac{x-5}{x-1}0    ⇒x\in (0;1)\cup(5;+\infty)

о т в е т  этого случая (-3;-1-\sqrt{3})

С учетом ОДЗ получаем окончательный ответ:(-3;-1-\sqrt{3})\cup(1;5)

4,6(57 оценок)
Открыть все ответы
Ответ:
anvasilovsckay
anvasilovsckay
19.03.2020

Объяснение:

коэффициент х3 при классификации биномов (2  x) 4.

[2]

2. Нарисуйте множество точек, которые являются решением системы неравенств:

x2  y2 ≤ 9,

x2  y2  6x  0.

 x2 ≥ y2-4х ≥ 0,

[3]

3.Решите систему уравнений:

a  b  6,

a2  b2  20.

[4]

4. периметр прямоугольника равен 18 см, а сумма площадей квадратов, вложенных в его соседние стенки, равна 41 см2. Найдите стенки прямоугольника.

[3]

5. без повторения цифр в составе числа, 1, 2, 3, 4, 5 сколько трехзначных чисел можно составить без остатка, делящихся на 2, образованных цифрами?

[3]

6. в коробке 3 желтых и 5 синих шарика.

а) сколько можно выбрать из коробки 3 шарика?

в) сколько выбрать хотя бы 2 желтых шара из 4-х выбранных из коробки?

4,6(96 оценок)
Ответ:
Dag18y5557hvvhi
Dag18y5557hvvhi
19.03.2020
1) 2у-3х=5
   3х=5-2у
   х=5-2у
         3

2) {5x+y=2
    {x-2y=71
x=71+2y
5(71+2y)+y=2
355+10y+y=2
11y=2-355
11y=-353
y=-353
      11
y= -32 ¹/₁₁

x=71+2*(-353) =71*11-2*353 =781- 706 = 75 = 6 ⁹/₁₁
               11           11                11        11
ответ: х=6 ⁹/₁₁
           у=-32 ¹/₁₁

3) у=-5   3х-2у=22
3х-2*(-5)=22
3х+10=22
3х=22-10
3х=12
х=4
ответ: х=4

5) х - количество 5 рублевых монет
  х+11 - количество 2 рублевых монет
2(х+11)+5х=50
2х+22+5х=50
7х=50-22
7х=28
х=4 - 5 рублевые монеты
4+11=15 - 2 рублевые монеты
ответ: 15 штук.

6) M(-4; -21)
    N(3; 7)
{-21=-4k+b
{7=3k+b

{-21+4k=b
{7-3k=b

-21+4k=7-3k
4k+3k=7+21
7k=28
k=4

7-3*4=b
7-12=b
b=-5

y=4x-5 - уравнение прямой.
4,6(18 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ