Допустим, автобус выходит из А в 6 утра и приходит в В в 10. Следующий выходит в 7, потом в 8, в 9, в 10, в 11, в 12, в 13. Придя в 10 утра в В, он разворачивается и едет обратно. В А он возвращается в 14. Автобус, который вышел из А в 7, к 10 часам проедет 3/4 дороги. А в 10:30 он проедет 3/4 + 1/8 = 7/8 и встретит первый автобус, который в 10 вышел из В. Автобус, который вышел в 8, к 10 часам проедет 1/2 дороги. А в 10:30 он проедет 1/2 + 1/8 = 5/8 дороги. И ровно в 11 он проедет 3/4 дороги и встретит первый автобус. И дальше все точно также. Таким образом, если я увидел встречный автобус, то следующий я увижу через полчаса.
Пусть эти числа а<b<c<d<e (равных среди них нет, т.к. среди 10 сумм нет одинаковых). Попарные суммы будут a+b, a+c, a+d, a+e b+c, b+d, b+e c+d, c+e d+e Сумма этих чисел равна 4(a+b+c+d+e)=-1+2+6+7+8+11+13+14+16+20=96, т.е. a+b+c+d+e=24. С другой стороны, понятно, что самая маленькая сумма равна -1=a+b, а самая большая d+e=20, значит с=24-20+1=5. Понятно также, что число а - отрицательное, значит a+c<c, и a+c≠-1, т.к. -1=а+b. Значит a+c=a+5=2, т.е. а=-3. Тогда b=-1-a=2. Очевидно 6=а+d, откуда d=6+3=9, и е=20-d=11. Итак, эти числа -3, 2, 5, 9, 11. Их произведение -2970.