1) y'=45-6*x-3*x². Решая уравнение -3*x²-6*x+45, или равносильное ему x²+2*x-15=0, находим x1=-5 и x2=3. В этих точках производная обращается в 0 и функция может иметь экстремумы. При x<-5 y'>0, при -5<x<3 y'<0, при x>3 y'>0. Функция определена и непрерывна на всей числовой оси. На интервалах (-∞;-5) и (3;+∞) функция монотонно возрастает, на интервале (-5;3) функция монотонно убывает. 2) Так как при переходе через точки x=-5 и x=3 производная меняет знак, то эти точки являются точками экстремума, причём x=-5 - точкой максимума, а x=3 - точкой минимума.
(6 2/9 - 5 5/9) : (-7/36) = (5 11/9 - 5 5/9) * (-36/7) = -6/9 * 36/7 = - 6*4/7 = - 24/7 = - 3 3/7