52 (книги на первой полке)
60 (книг на второй полке)
Объяснение:
х - книг на первой полке
у - книг на второй полке
х+у=112
После перестановки:
(у+0,3у) на второй полке
По условию задачи, это больше, чем на первой, на 26 штук, уравнение:
(у+0,3у)-х=26
Получили систему уравнений:
х+у=112
(у+0,3у)-х=26
Выразим х через у в первом и втором уравнениях:
х=112-у
-х=26-1,3у
х=1,3у-26
Теперь приравняем правые части (левые равны) и вычислим у:
112-у=1,3у-26
-у-1,3у= -26-112
-2,3у= -138
у= -138/-2,3
у=60 (книг на второй полке)
х=112-у
х=112-60
х=52 (книг на первой полке)
Проверка:
После перестановки:
60+18-52=26, всё верно.
все таки математика настигла огромной волной и накрыла корнями и дробными степенями ???
(x)^1/n = ⁿ√x (например x^1/3 = ∛x x^1/2 = √x)
x² - y² = (x - y)(x + y)
(x + y)² = x² + 2xy + y²
(x^n)^m = x^(nn)
x^n * x^m = x^(n+m)
ⁿ√xⁿ = x (для положительных х)
x^-1 = 1/x
1. 64^1/6 = ⁶√(2⁶) = 2
2. 27 ^2/3 = ∛ 27² = ∛ (3³)² = 3² = 9
3. 0^51/4 = 0 (0 в любой положительной степени = 0)
5. x^1/2 = (x^1/4)²
(a^1/2 - b^1/2) / (a^1/4 + b^1/4) = (a^1/4 - b^1/4)(a^1/4 + b^1/4)/(a^1/4 + b^1/4) = a^1/4 - b^1/4
4. (x^1/3 + y^1/3)² - 2∛(xy) - 1/(∛y)^-2 = x^2/3 + 2x^1/3*y^1/3 + y^2/3 - 2x^1/3*y^1/3 - y^2/3 = x^2/3
^ - степень ( x^2/3 = ∛x² икс в степени две третьих)