㏒₃4 > 0, т.к. основание равно 3 > 1, а подлогарифмическое выражение равно 4, то есть его значение больше значения основания.
Допустим, что это число рационально. Значит оно представимо в виде b/n, где b/n > 0, b, n - целые, b, n ≠ 0. Не нарушая общности, допустим, что b, n - натуральные.
Тогда:
㏒₃4=b/n → n*㏒₃4=b → ㏒₃(4ⁿ)=b → 3ᵇ=4ⁿ
3ᵇ - нечетное для любой натуральной степени b [3ᵇ≡1ᵇ(mod 2)=1]
4ⁿ - четное для любой натуральной степени b [4ᵇ≡0ᵇ(mod 2)=0]
Получаем равенство четного и нечетного чисел. Противоречие. Значит число ㏒₃4 иррационально.
Ч.т.д.
Квадратный корень имеет смысл, если его подкоренное выражение неотрицательно. Пользуясь этим правилом, можем сказать, что подкоренное выражение должно быть больше или равно 0. Отсюда следует неравенство:
x+7.6 ≥ 0
x ≥-7.6
Видим, что наименьшее целое число, это -7
2)Поскольку графики пересекаются, то имею полное право приравнять их формулы, и найти x, это и будет абсцисса точек пересечения:
7x -8 = x²
x²-7x+8 = 0
Мы вышли на квадратное уравнение, достаточно теперь найти его корни:
D = b² - 4ac = 49 - 32 = 17
x1 = (7 - √17) / 2; x2 = (7+√17) / 2
данные иксы, это абсциссы точек пересечения графиков.
По условию, нам надо найти сумму данных абсцисс. Значит,
x1 + x2 = (7-√17) / 2 + (7+√17)/2 = 14/2 = 7
7 - сумма абсцисс точек пересечения графиков. Задача выполнена.
Скачай фотомаз тогда будеть легче