В данном примере трудность для сравнения представляют только 2 числа: -√14 и -3(1). Какое из них меньше?
Если мы точно не знаем, чему равен √14, то можно сравнить его с ближайшими квадратами чисел, которые мы знаем или легко можем рассчитать.
Ближайшие - это 3^2 = 9 и 4^2 = 16.
14 лежит в интервале от 9 до 16, но 5 единицах от 9 и всего в 2-х единицах от 16, - значит, √14 значительно больше половины интервала числе от 3 до 4, которые возводили в квадрат, т.е. √14 > 3,5.
Можем проверить: 3,5^2 = 12,25, а у нас 14.
Делаем вывод: - √14 на числовой оси лежит левее (то есть меньше) -3(1).
Таким образом, в порядке возрастания числа располагаются в следующем порядке:
Строишь график функции y = 3x² и сдвигаешь его на 2,5 единичных отрезка влево. (Ты вообще можешь сразу провести пунктиром линию x = 2,5 (это вертикальная линия, которая пересекается с осью Оx в точке 2,5) и строить свой график, как будто твой пунктир - это ось Оy). График y = 3x² строится как зауженная парабола, проходящая через точки (0; 0), (1; 3), (2; 12), (-1; 3), (-2; 12). Окончательный график (ну, тот, который и надо было построить) будет проходить через точки, у которых вторая координата, т.е. y, будет такая же, как у графика y = 3x², а первую, т.е. x, каждый раз надо уменьшать на 2,5. Т.е. это будут точки (-2,5; 0), (-1,5; 3), (-0,5; 12), (-3,5; 3), (-4,5; 12).
-√14; -3(1); 3,147.
Объяснение:
В данном примере трудность для сравнения представляют только 2 числа: -√14 и -3(1). Какое из них меньше?
Если мы точно не знаем, чему равен √14, то можно сравнить его с ближайшими квадратами чисел, которые мы знаем или легко можем рассчитать.
Ближайшие - это 3^2 = 9 и 4^2 = 16.
14 лежит в интервале от 9 до 16, но 5 единицах от 9 и всего в 2-х единицах от 16, - значит, √14 значительно больше половины интервала числе от 3 до 4, которые возводили в квадрат, т.е. √14 > 3,5.
Можем проверить: 3,5^2 = 12,25, а у нас 14.
Делаем вывод: - √14 на числовой оси лежит левее (то есть меньше) -3(1).
Таким образом, в порядке возрастания числа располагаются в следующем порядке:
-√14; -3(1); 3,147.