М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
amwarawka
amwarawka
30.04.2020 15:38 •  Алгебра

X-2x²+7=1-5x решить уравнение​

👇
Открыть все ответы
Ответ:
Магомед05111
Магомед05111
30.04.2020
Точка x0 называется точкой максимума функции f(x), если существует такая окрестность точки x0, что для всех x ≠ x0 из этой окрестности выполняется неравенство f(x)< f(x0).Точка x0 называется точкой минимума функции f(x), если существует такая окрестность точки x0, что для всех x ≠ x0 из этой окрестности выполняется неравенство f(x)> f(x0).Точки минимума и точки максимума называются точками экстремума.Теорема. Если x0 – точка экстремума дифференцируемой функции f(x), то f ′(x0) =0.Точки, в которых функция имеет производную, равную нулю, или недифференцируема (не имеет производной), называют критическими точками. Точки, в которых производная равна 0, называют стационарными.Геометрический смысл: касательная к графику функции y=f(x) в экстремальной точке параллельна оси абсцисс (OX), и поэтому ее угловой коэффициент равен 0 ( k = tg α = 0).Теорема: Пусть функция f(x) дифференцируема на интервале (a;b), x0 С (a;b), и f ′(x0) =0. Тогда:1) Если при переходе через стационарную точку x0 функции f(x) ее производная меняет знак с «плюса» на «минус», то x0 – точка максимума.2) Если при переходе через стационарную точку x0 функции f(x) ее производная меняет знак с «минуса» на «плюс» , то x0 – точка минимума. ПРАВИЛО нахождения наибольшего и наименьшего значения функции f(x)                                          на отрезке [a;b]. 1. Найти призводную функции и приравнять нулю. Найти критические точки.2. Найти значения функции на концах отрезка, т.е. числа f(a) и f(b).3. Найти значения функции в тех критических точках, которые принадлежат [a;b].4. Из найденных значений выбрать наибольшее и наименьшее.  ПРАВИЛО нахождения минимума и максимума функции f(x)                                          на интервале (a;b).1. Найти критические точки f(x) (в которых f ′(x)=0 или f(x) не существует) .2. Нанести их на числовую прямую (только те, которые принадлежат (a,b) ).f ′(x)                +                       –                        +
                 a x0x1 bf (x)                   /                       \                        /3. Расставить знаки производной в строке f ′(x) , расставить стрелки в строке f(x).4. x max = x0,           x min = x1.5. y max = y(x0),       y min = y(x1).
4,4(88 оценок)
Ответ:
nikoldasha421
nikoldasha421
30.04.2020

1
x>0,y>0
{x²+y²=5
{log(2)x+log(2)y=1⇒log(2)xy=1⇒xy=2⇒2xy=4
прибавим
x²+y²+2xy=9
(x+y)²=9
a)x+y=-3
x=-3-y
-3y-y²=2
y²+3y+2=0
y1+y2=-3 U y1*y2=2
y1=-2 не удов усл
у2=-1 не удов усл
б)x+y=3
x=3-y
3y-y²=2
y²-3y+2=0
y1+y2=3 U y1*y2=1
y1=1⇒x1=2
y2=2⇒x2=1
(2;1);(1;2)
2
x>0,y>0
{x²-y²=12
log(2)x-log(2)y1⇒log(2)(x/y)=1⇒x/y=2⇒x=2y
4y²-y²=12
3y²=12
y²=4
y1=-2 не удов усл
y2=2⇒x=4
(4;2)
3
x>0,y>0
{x²+y²=25
lgx+lgy=lg12⇒xy=12⇒2xy=24
x²+y²+2xy=49
(x+y)²=49
a)x+y=-7
x=-y-7
-y²-7y=12
y²+7y+12=0
y1+y2=-7 U y1*y2=12
y1=-3 не удов усл
y2=-4 не удов усл
б)x+y=7
x=7-y
7y-y²=12
y²-7y+12=0
y1+y2=7 U y1*y2=12
y1=3⇒x1=4
y2=4⇒x2=3
(4;3);(3;4)
4
x>0  y>0
{log(0,5)xy=-1⇒xy=2
{x=3+2y
3y+2y²-2=0
D=9+16=25
y1=(-3-5)/4=-2 не удов усл
у2=(-3+5)/4=0,5⇒х=4
(4;0,5)

4,7(73 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ